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Foundation of Information Retrieval

Three Monumental Challenges

3 Formulating a "good” feature space

3 Formulating a perceptual distance function
¥ Having an efficient clustering algorithm




What Is Clustering ?

% Cluster: a collection of objects that are
“similar” to one another

¥ Used either as

~la stand-alone tool to get insight into data
distribution or

~las a preprocessing step for other algorithms, e.g.,
to discover classes, and associations between
classes

38 C/usfer?g is partitioning of data into
meaningful

groups called c/usters.

[~ To help understand the natural grouping or
structure in a data set.




The ?First? Application of Clustering

3 A London physician plotted the location of cholera cases on a
map during an outbreak in the 1850s.

3 The locations indicated that cases were clustered around
certain intersections where there were polluted wells -- thus
exposing both the problem and the solution.

3 Not all clustering is this easy (2 dimensional, small number of
points.) ®




Some Modern Applications of Clustering

¥ Operations Research

[AlFacility Location Problem: locate fire stations so as to
minimize the maximum/average distance a fire truck must
travel

¥ Signal Processing

A1Vector Quantization: Transmit large files (e.g., video, speech)
by computing quantizers

3 Indexing

[A1Grouping similar objects together to facility efficient
similarity searches



..Applications of Clustering

¥ Marketing:

[~1Segmentation of customers for target marketing
[~] Segmentation of customers based on online clickstream data

¥ Web

[~ To discover categories of content
[~ Search results

¥ In practice, clustering is one of the most widely used
data mining technigues
[~ Association rule algorithms produce too many rules
[~1Other machine learning algorithms require labeled data



What we need for clustering?

#In order to cluster, we need
~lData items (points, sequences)
A]A distance function and

~lA method for evaluating our clustering
results




Points/Metric Space

$8Points could be in R9, {0,1}4,...

¥ Metric Space: dist(x,y) is a distance metric if
AReflexive: dist(x,y)=0 iff x=y

AlSymmetric: dist(x,y)= dist(y,x)

Al Triangle Inequality: dist(x,y) < dist(x,z) + dist(z,y)
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Example of Distance Metrics

3 The distance between x=<xy,...,X,> and y <Y1, Y, IS

¥ Documents: Cosine measure RN/

A Similarity, not distance [

[XIT.e., more similar -> close to 1
XlLess similar -> close to O

[~INot a metric space, but 1-cos6 is




What is a Good Clustering?

¥ A good clustering method will produce
clusters where

ANthe /ntra-cluster distance is small
ANthe /nter-cluster distance is /arge




Clustering Quality Measures

» Given a set S of /7 points in

- K-Center: Find & centers such that the maximum
radius of a cluster is minimized.

Y o

- k-Median: Find % centers that Minimize the Average
Distance from a point to its nearest center

s



Inter-Intra

3 Distance between clusters is the minimum distance
for xand yin different clusters (aka "single-
linkage")
# Tightness of a clustering is the maximum diameter of
any cluster

3 Objective Function:
[~ Maximize (Distance between clusters - Tightness)

3 Next: An algorithm that finds the opfimum solution
[AIMost clustering problems are NP-hard. So this is a rarity.



Hierarchical Agglomerative Clustering (HAC)

D

3 Standard clustering approach
[AIInitially, all points are in own clusters
[~IMerge two closest clusters

[~IRepeat




HAC

3 The Algorithm (More Specific)
A~1Start with each point in a cluster by itself

[~IRepeatedly merge the two clusters that are
closest until there is just one cluster, where

dist (C,,C,)= min dist (p,q)

peC,,qeC,

Output the best clustering generated in this
process, i.e., output the clustering that
maximizes D(C) - T(C).



Dendogram

3 A Dendrogram shows how the clusters are merged
hierarchically

¥ A clustering of the data objects is obtained by
cutting the dendrogram at the desired level, then
each connected coqvponenf forms a cluster
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Dendogram
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Level1:D-T=25
Level2:D-T=84-05=7.9
Level 3: D-T=80-1.75=6.25



HAC still works..




Single Link Agglomerative

3 Use maximum similarity of pairs:

sim(c;,c;)= max sim(x,y)

XEC;,VEC,

3 Similarity = 1/distance
3 Can result in "straggly” (long and thin)
clusters due to chaining effect

~lAppropriate in some domains, such as
clustering islands.




Single Link Example -




Complete Link Agglomerative

38Use minimum similarity of pairs:

sim(c;,c;)= min sim(x,y)

XEC;,VEC,

3 Makes more "tight,” spherical clusters
that are typically preferable.



Complete Link Example




Dendogram




Good Things about HAC

F$Combines Inter-Intra
FDon't need to know number of clusters

stHowever, if there is an optimum
solution with 4 clusters, HAC might find
more or less than

AlFinding optimum solution with minimum
number of clusters 4 is NP-hard




Problems with HAC |

3 Running Time:

¥ Imagine doing this for the 2-4 billion
documents on the web.

3£ Open question: How to optimize Inter-Intra

on a large data set or data stream?

3 Next: Change the objective function

AIWill not be as "general”
[~ITs very simple to state
[~1But can cluster large data sets/data streams



k-Center Problem Definition

Given /1 points in a metfric space,
find k& centers

so as to minimize the maximum distance
from a point to its nearest center (radius)



Discrete vs. Con’rin_uous k—_CenTer'

3 Suppose points in Rd,
& k centers in S (discrete) or R4 (continuous) ?

¥ Claim:. The best Discrete solution is within a factor
of 2 of the best Continuous solution.

¥ Proof: (skip)
[~1Start with the best continuous solution
[~IPick the points in S closest to the continuous solution
[~INow bound radius

dist( @, @) <dist(® % )+dist(*k, © ) <20PT
3 Assume Discrete k-Center from now on.




Naive Algorithm

The Naive Algorithm: Enumerate all possible A-
clusterings and output the one that optimizes
the clustering metric.

- This algorithm is inefficient because there
are roughly /7 different k-clusterings of
pointsl

- So, naive won't cut it




k-Center is NP-hard

> Claim.: Dominating Set < k-Center

Qo Qo

:Dominating Set

AlGiven a graph and a number
AlQuestion: Does there exist such
that

Xleach vertex vis either in S or adjacent to

M 2-Dominating Set



k-Center is NP-hard

Z:TPGnSf_OI;' . G ;"0 C( set o po|n1.s P:V
where [ {1 if (u,v)eE

2 otherwise

* Note: Triangle inequality is preserved.
* Note 2 is the

1 .
&) O maximum
1 | 1 1% 2§ allowable number
if want to preserve

triangle inequality




K-Center is NP-hard, contd

"has a o has a 4-center
dominating set clustering of cost 1

K
E j 1 1

— If 3 k dominating set then 3 k center clustering with
cost 1
< If no k dominating set then any k centers have cost 2




Approximation Algorithm

cUnlikely that there is a poly-time algorithm

for finding the k best centers.

5 Can we find k “close to best”centers?

Cost of k centers we find <.

Cost of k optimum centers

[~lc-approximation algorithm.
[~lc is some small constant

> Next: Show a simple 2-approximation

Glgo r |Th m [Gonzalez]



Farthest Point Clustering Algorithm, k=4

ALG:
Select an arbitrary center ¢,
Repeat until have k centers
Select the next center c.,; to be the on
farthest from its closest center
° . ©

© 0 O
N

o



Farthest Point Clustering Algorithm, k=4




Can we do better than a 2
approximation?

3 Claim: There is no poly time algorithm that obtains a
(2-¢) approximation to k-Center, unless P=NP.

[A1A (2- ¢) approximation to k-Center can solve k-Dominating
Set

has a has a k-center
dominating set N clustering of cost 1




How important is metric space assumption?

8 Claim: Without metric assumption, k-center cannot be

approximated to any constant c.

¥ Transform: G to a set of points P=V where

_ 1 if (u,v)ek
dist(u,v) = .
c+1 otherwise

S

« We've lost triangle inequality.

» A c-approximation to k-center implies an algorithm that can
distinguish between k dominating set (cost between 1 and c) or
not (cost between c+1 and c(c+1)).



- Running Time

g Running Time:

passes through the data set, each pass
takes time.

3 What if our data is too large to fit in main
memory?



¥ Maximizing Inter-Intra Cluster Quality

~AlConditions under which HAC Algorithm finds
optimum solution in polynomial time

~lAlgorithm does not scale
FEK-Center
~INP-hard

AlFarthest Point Algorithm yields 2-
approximation




K-Median Problem Definition

Given /1 points in a metfric space,
choose A medians
so as to minimize the assignment cost:

the sum of (squared) distances from
points o nearest centers.



Single-Pass Algorithm

$£0,1,3,9,10,12,15,19,20
F Threshold = 2

¥ Sort the data, if have not been
#{0}, {0,1}, {0,1}, {3}) ({0,1} {3}.{9})

({0.13.{3}.{9.10})...
{0,1},(3}.{9,10} {12} {15} {19,20}




Single-Pass Algorithm

T1 T2 T3 T4 TH

#1 1 2 0 O 1
#2 3 1 2 3 0
#3 3 O O O 1
H#H4 2 1 0 3 0
#5 2 2 1 5 1

Threshold setting is most critical



_OuTIi he

K-median
TSVQ

21 2 2 2




Clustering Quality Measures

» Given a set S of /7 points in

- K-Center: Find & centers such that the maximum
radius of a cluster is minimized.

Y o

- k-Median: Find % centers that Minimize the Average
Distance from a point to its nearest center

s



K-Center not always the "right" clustering measure

Max radius = 2

Max radius = 1.5




Facility Placement Problem

The K-Median Problem =

#We want the facilities to be as

efficient as possible, thus we want to
minimize the distance from each client

to

its closest facility.

¥ There can be a cost associated with

creating each facility that also must be
minimized

N\

Otherwise if we were not limited to k

facilities, all points could be facilities



K-N\ediqn Problem_ Defiﬂifio" |

ok

Given D a set of 77 points in a metfric space
choose A medians
so as to minimize the assignment cost:

the sum of (squared) distances from
points to nearest centers. |ESEpTRTEE




Local Search / K-Median

Where do we place our k facilities?

The Algorithm:

Choose some initial K points
to be facilities, and calculate
your cost

Initial points can be chosen
by first choosing a random
point, then successively
choosing the point farthest
from the current group of
facilities until you have your
initial K




Local Search / K-Median

Now we swap

While there exists a swap
between a current facility
location and another
vertex which improves our
current cost, execute the
swap




Local Search / K-Median

Now we swap

While there exists a swap
between a current facility
location and another point
which improves our current
cost, execute the swap




Local Search / K-Median

Now we swap

While there exists a swap
between a current facility
location and another point
which improves our current
cost, execute the swap

Etc.




Local Search / K-Median

3 It is possible to do multiple swaps at one
time

#In the worst case, this solution will

produce a total cost of (3 + 2/p) times the
optimal cost, where p is the number of
swaps that can be done at one time



K-MZGHS_ A lgori T hm [MacQeen, 1967

Select k centers somehow (e.g., choose
points in R°)

2Repeat until k centers don't change (or
change very little)

AlPartition the data according to the
centers

~AlUse the means of the cluster to find k new
centers
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| K_—_M_eans Issues

3£ A dense local area can trap a center

£ Clustering quality depends on initial K

points
~lHow do we know K ?




_More Generally

FPerf(X,M) = 2 , . x d(x,M)

¢t K-Means

Ad(x,M) = min {||x-m]||? | m ¢ M}
EEM

Ald(x,M) = -log (2 < Pm X Gr(X))
A6, (x) = exp(-]|1x- m|]?)

& K-Harmonic Means

Ad(x,M) = [M|/Z cnl/ [Ix-m]|?



HA (x.y) vs. MIN (x,y)

¥ K-Harmonic Means

Ad(x,M) = IM]/2 w1/ [|x-m]]?

Ad(x,M) = [M|/>2 cun 1/ ||x-m]]P



EM (restricted)

$%EM with linear mixing of K spherical
Gaussians

3 EM: recursive E and S steps

~E-Step

p(my|x;) = p(x;Imy) x p(my)/ 2izin p(xiImy) x p(my)
~IM-Step

My = 2iaan P X3) X X 7 20 P>y X;)

p(my) = 1/N 2. p(my | x;)




_Comparison

KH;:

KM:



Comparison

Fig. 3. A Plotof ayx) for &-Harmome Means wath two cenbers m one-dimensional space
The two cemters are located 21 6.5 md 193




Q

¥ Linde-Buzo-6ray (LBG) algorithm

Let the codebook size be Kand the training vectors be { x(n)| n=1,.. .M}

Stepl Let the initial codebook C={y(/) | 7= 1,..,K} be randomly
selected from { x(n)| n=1,.. .M}

Step 2  Cluster the training vectors into K'groups &(/), 7=1,.. K,
where &()={x(a) | d(x(a), ©1) < d(xa), ). j= 7 and
a(p, g) denotes the distance between p and g}

Step 3  If the distortion decreases, then go to Step 4
Else stop

Step4  New /) = 1

, where |&(i)| = the number of

oI

a)eG (i)

vector in &(/) ; go to Step 2



Codebook Generation

x = training codevectors
O = codewords in the codebook
G/ = region encoded into codeword /



Codebook Generation




Any finite set S of n points on the plane gives rise to a cellular
decomposition of the plane called the

€ For a codebook Ywhich
contains « codevectors,it is
equivalent to a Voronoi
partition of RP:r; r, rs, ..., ry,
where r={x e RP:Q(x)- ¥}

¢ With This definition,it follows
that U r,=RP"
2, for . /¢J

and rin rj=




Codebook Generation

3 What LBG generate is a local optimal

codebook

3 The following methods are used to improve

the codebook
[~IPerturbation
~1Simulated annealing
~lGenetic algorithm
~lEtc.



Codebook Generation

> Codebook Generation

AIInitial codebook

Xlrandom code
Xlsplitting method
Xlpairwise nearest neighbor clustering

[~ Training codebook

>How to measure the quality of codebook
~IEntropy
IAISNR



Tree Structured VQ

3 TSVQ reduces the quantizer search
complexity by replacing full search encoding
with a sequence of tree decisions.

:
-/\

Py
na ;!a- ﬂ/a\n o A p



3 Other designs

Tapered tree structured
XINumber of branches increases as level increases

X1Shown to have better performance than tree with
fixed m branches

Pruned tree

X1Start from a complete balance tree, branches that
contribute the least to the signal fidelity are pruned
away

XIShown to have better performance than full search for
speech signals



- TSVQ Wrap

£ O(N log K)

Refer to Vector Quantization and Signal

Compression, by Allen Gersho and Robert M.
Gray, Kluwer Academic Pub., 1992 for an
extensive study of VQ.




Conclusion

3 Algorithms
AInter-Intra
[~IK-Center
[~1K-median
AITSVQ
3t Key Components
~lClustering quality measurement

[~IInter/intra-cluster distance
A~IK ?
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