Clustering

Text Clustering

« Partition unlabeled examples into disjoint
subsets of clusters, such that:
— Examples within acluster are very similar
— Examples in different clusters are very different
+ Discover new categories in an unsupervised
manner (no sample category labels provided).

Clustering Exampl

Hierarchica Clustering

 Build atree-based hierarchical taxonomy
(dendrogram) from aset of unlabeled examples.
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» Recursive application of a standard clustering
algorithm can produce a hierarchica clustering.

Aglommerative vs. Divisive Clustering

Direct Clustering Method

 Aglommerative (bottom-up) methods star
with each example in itsown cluster and
iteratively combine themto form larger and
larger clusters.

* Divisive (partitional, top-down) separate all
examplesimmediatdy into clusters.

* Direct clustering methods require a
specification of the number of clusters, k,
desired.

* A clustering evaluation functio assignsa
real-value quality measure to a clustering.

» Thenumber of clusters can be determined
automatically by explicitly generating
clusterings for multiple values of k and
choosing the best result according to a
clustering evaluation function.




Hierarchical Agglomerative Clustering
(HAC)
» Assumes a similarity function for determining
the similarity of two instances.
» Startswith all instancesin a separate cluste
and then repeatedly joinsthetwo clusters that
aremost similar until thereis only one cluster.

e Thehistory of merging formsabinary treeo
hierarchy.

HAC Algorithm

Start with all instancesin their own cluster.
Until thereisonly one cluster
Among the current clusters, determine the two
clugters, ¢; and ¢, that are most similar.
Replace ¢ and ¢; with asinglecluster ¢ 0 ¢

Cluster Similarity

» Assume a Smilarity function that determines the
similarity of twoinstances: Sm(x.y).
— Cod ne smilarity of document vectors.
» How to compute similarity of two clusters each
possibly containing multiple instances?
— SingleLink: Similarity of two most s milar members.
— Complete Link: Similarity of two least similar members.
— Group Average: Average s milarity between members.

Single Link Agglomerative Clustering

» Use maximum similarity of pairs:
sm(c,c;) = max sim(x,y)
xg;, yce;

e Can resultin“straggly” (long and thin)
clusters dueto chaining effect.

— Appropriate in some domains, such as
clustering islands.

Single Link Example

Complete Link Agglomerative Clustering

e Useminimum similarity of pairs:
sim(c,,c;) = min sim(xy)
xei , yle;

» Makes more“tight,” spherical clustersthat
aretypically preferable.




Complete Link Example

Computational Complexity

* In thefirstiteration, al HAC methods need
to compute similarity of all pairsof n
individual instances which is O(n?).

« In each of the subsequent n—2 merging
iterations, it must compute the distance
between the most recently created cluste
and all other existing clusters.

* In order to maintain an overall O(n?)
performance, computing similarity to each
other cluster must be done in congtant time.

Computing Cluster Smilarity

* After merging ¢ and ¢, thesimilarity of the
resulting cluster to any other cluster, ¢,, can
be computed by:

— Single Link:

sim((c; 0 Cj)!ck) =max(sim(c,c,), SinKCj 1C))
— Complete Link:

sim((c; 0 Cj)!ck) =min(sim(c,, Ck)!Sim(Cj ')

Group Average Agglomerative Clustering

» Useaverage smilarity acrossal pairs within the
merged cluster to measure the similarity of two
clusters.
sm(c,.c;) = sim(X, Y)
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» Compromise between single and complete link.

» Averaged across dl ordered pairsin the merged
cluster instead of unordered pairs between the two
clusters (why, | don't really understand).

Computing Group Average Similarity

» Assume cosine similarity and normalized
vectors with unit length.

Always maintain sum of vectorsin each
cluster.
s(c))=) X
Computesjmilarify of clustersin constant
time:
(s(c) +s(c; )= (s(c)+s(c)) (g +]c D
(el+leddcl+lc |-

sm(c.c,) =

Non-Hierarchical Clustering

» Typicaly must provide the number of desired
clusters, k.

» Randomly choose k instances as seeds, one per
cluster.

» Forminitial clusters based on these seeds.

* lterate, repeatedly reallocating instances to
different clustersto improve the overall clugtering.

» Stop when clustering converges or after afixed
number of iterations.




K-Means

* Assumesinstances are real-valued vectors.

* Clusters based on centroids, center of
gravity, or mean of points in acluster, c:
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» Reassignment of instances to clustersis
based on distance to the current cluste
centroids.

Distance Metrics

* Euclidian distance (L, norm):
L(xy)= Z(X‘ -¥)?
e L, norm: m
L% Y) =3 [% -y
» Cos neSimiIai‘t;/ (transform to adistance
by subtracting from 1):
X .y
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K-Means Algorithm

Let d be the distance measure between instances.

Sdect krandom instances {s;, S,,... S} as seeds.

Until clustering converges or other stopping criterion:
For each instance x;:

Assgn X tothe cluster ¢ such that d(x;, §) is minimal.

(Update the seeds to the centroi - of each cluster)
For each cluster ¢

§=H(g)

K Means Example
(K=2)

. Pick seeds
Reassign clusters
Compute centroids
Reasssign clusters
x ¢ X ¢ x Compute centroids

Reassign clusters

Converged!

Time Complexity

» Assume computing distance between two ingtancesis
O(m) where mis the dimensionality of the vectors.

 Reassigning clusters: O(kn) distance computations,
or O(knm).

e Computi  centroids: Each instance vector gets
added once to some centroid: O(nm).

» Assume these two steps are each done once for |
iterations: O(lknm).

» Linearin al relevant factors, assuming afixed
number of iterations, more efficient than O(n? HAC.

Seed Choice

* Results can vary based on random seed
selection.

» Some seeds can result in poor convergence
rate, or convergence to sub-optimal
clusterings.

» Select good seeds using a heuristic or the
results of another method.




Buckshot Algorithm

Combines HAC and K-Means clustering.
First randomly take a sample of instances of
sizevn

Run group-average HAC onthis sample,
which takes only O( n) time.
Usetheresults of HAC asinitial seeds fo
K-means.

Overall agorithmis O(n) and avoids
problems of bad seed selection.

Text Clustering

HAC and K-Means have been applied to text in a
graightforward way.
Typicaly use normalized, TH/IDF-weighted vectors
and cosine similarity.
Optimize computations for sparse vectors.
Applications:
— During retrieval, add other documentsin the same cluster
astheinitial retrieved documents to improve recall.
— Clugtering of results of retrieval to present more organized
resultsto the user (ala Northernlight folders).
— Automated production of hierarchical taxonomies of
documents for browsng purposes (alaY ahoo & DMOZ).
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Soft Clustering

Clustering typically assumes that each instanceis
given a“hard” assignment to exactly one cluster.
Does not allow uncertainty in class membership or
for an instance to belong to more than one cluster.
Soft clustering gives probabilities that an instance
belongsto each of aset of clusters.

Eachinstance is assigned a probability distribution
across a set of discovered categories (probabilities
of all categories must sumto1).

Expectation Maximumization (EM)

 Probabilistic method for soft clustering.
* Direct method that assumesk clustersi{c,, c,,... ¢}
* Soft version of k-means.

» Assumes aprobabilistic modd of categories that
allows computing P(c; | E) for each category, c;, for a
given example, E.

* For text, typically assume a naive-Bayes category
modd.

— Parameter = {P(c), P(W |¢): iD{1,...K},j O{1,... M}

EM Algorithm

Iterative method for learning probabilistic

categorization model from unsupervised data.

Initially assume random assignment of examples to

categories.

Learn an initial probabilistic model by estimating

modd parameters 6 from this randomly labeled data.

Iterate following two steps until convergence

— Expectation (E-step): Compute P(c, | E) for each example
given the current model, and probabilistically re-label the
examples based on these posterior probability estimates.

— Maximization (M-gep): Re-estimate the model
parameters, 6, from the probabilistically re-labeled data.

Learning from Probabilisticaly Labeled Data

* Instead of training datalabeled with “hard”
category labels, training datais labeled with “soft”
probabilistic category labels.

» When estimating model parameters® from training
data, weight counts by the corresponding
probability of the given category label.

» For example, if P(c, | E) = 0.8 and P(c, | E) = 0.2,
eachword w; in E contributes only 0.8 towards the
counts n; and ny;, and 0.2 towards the countsn, and

Ny .




Naive Bayes EM

Randomly asd gn examples probabilistic category 1abels.
Use gandard naive-Bayes training to learn a probabilistic model
with parameters 6 from the labeled data.
Until convergence or until maximum number of iterations reached:
E-Step: Use the naive Bayes model 6 to compute P(c; | E) for
each category and example, and relabel each example
using these probability va ues as soft category labels
M-Step: Use sandard neiive-Bayes training to re-esti mate the

parameters 8 usng these new probabilistic category labels.

Sem -Supervised Learning

For supervised categorization, generating |abeled

training data isexpensive.

Idea: Use unlabeled data to aid supervised

categorization.

Use EM in asemi-supervise mode by training

EM on both labeled and unlabeled data.

— Traininitial probabilistic modd on use -labeled subset
of dataingtead of randomly Iabeled unsupervised data.

— Labelsof user-labeled examplesare “ frozen” and never
relabeled during EM iterations.

— Labelsof unsupervised data are constantly
probabilistically relabeled by EM.

Sem -Supervised Example

* Assume “quantum” is present in severa labeled
physics documents, but “ Heisenberg” occursin
none of the labele data.

» From labeled data, learn that “ quantum” is
indicative of a physics document.

» When labeling unsupervised data, label several
documents with “quantum” and “Heisenberg”
correctly with the“physics’ category.

* When retraining, learn that “ Heisenberg” isalso
indicative of a physics document.

» Final learned model isable to correctly assign
documents containing only “Heisenberg” to
physics. »

Sem -Supervison Results

Experiments on assigning messages from 20
Usenet newsgroups their proper newsgroup label
With very few labeled examples (2 examples per
class), semi-supervised EM improved accuracy
from 27% (supervised data only) to 43%
(supervised + unsupervised data).

With more labeled examples, semi-supervison
can actually decrease accuracy, but refinements to
standard EM can prevent this.

For semi-supervised EM to work, the “natural
clustering of data” must be consistent with the
desired categories.




