
1

1

Text Clustering
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Clustering

• Partition unlabeled examples into disjoint 
subsets of clusters, such that:
– Examples within a cluster are very similar

– Examples in different clusters are very different

• Discover new categories in an unsupervised
manner (no sample category labels provided).
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Hierarchical Clustering

• Build a tree-based hierarchical taxonomy 
(dendrogram) from a set of unlabeled examples.

• Recursive application of a standard clustering 
algorithm can produce a hierarchical clustering.

animal

vertebrate

fish reptile amphib. mammal      worm insect crustacean

invertebrate
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Aglommerative vs. Divisive Clustering

• Aglommerative (bottom-up) methods star
with each example in its own cluster and 
iteratively combine them to form larger and 
larger clusters.

• Divisive (partitional, top-down) separate all 
examples immediately into clusters.
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Direct Clustering Method

• Direct clustering methods require a 
specification of the number of clusters, k, 
desired.

• A clustering evaluation functio assigns a 
real-value quality measure to a clustering.

• The number of clusters can be determined 
automatically by explicitly generating 
clusterings for multiple values of k and 
choosing the best result according to a 
clustering evaluation function.
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Hierarchical Agglomerative Clustering 
(HAC)

• Assumes a similarity function for determining 
the similarity of two instances.

• Starts with all instances in a separate cluste
and then repeatedly joins the two clusters that 
are most similar until there is only one cluster.

• The history of merging forms a binary tree o
hierarchy.
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HAC Algorithm

Start with all instances in their own cluster.
Until there is only one cluster

Among the current clusters, determine the two 
clusters, ci and cj, that are most similar.

Replace ci and cj with a single cluster ci ∪ cj
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Cluster Similarity

• Assume a similarity function that determines the 
similarity of two instances: sim(x,y).
– Cosine similarity of document vectors.

• How to compute similarity of two clusters each 
possibly containing multiple instances?
– Single Link: Similarity of two most similar members.

– Complete Link: Similarity of two least similar members.

– Group Average: Average similarity between members.
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Single Link Agglomerative Clustering

• Use maximum similarity of pairs:

• Can result in “straggly” (long and thin) 
clusters due to chaining effect.
– Appropriate in some domains, such as 

clustering islands. 
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Single Link Example
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Complete Link Agglomerative Clustering

• Use minimum similarity of pairs:

• Makes more “tight,” spherical clusters that 
are typically preferable.
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Complete Link Example
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Computational Complexity

• In the first iteration, all HAC methods need 
to compute similarity of all pairs of n 
individual instances which is O(n2).

• In each of the subsequent n−2 merging 
iterations, it must compute the distance 
between the most recently created cluste
and all other existing clusters.

• In order to maintain an overall O(n2) 
performance, computing similarity to each 
other cluster must be done in constant time.
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Computing Cluster Similarity

• After merging ci and cj, the similarity of the 
resulting cluster to any other cluster, ck, can 
be computed by:
– Single Link:

– Complete Link:
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Group Average Agglomerative Clustering

• Use average similarity across all pairs within the 
merged cluster to measure the similarity of two 
clusters.

• Compromise between single and complete link.

• Averaged across all ordered pairs in the merged 
cluster instead of unordered pairs between the two 
clusters (why, I don’t really understand).
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Computing Group Average Similarity

• Assume cosine similarity and normalized 
vectors with unit length.

• Always maintain sum of vectors in each 
cluster.

• Compute similarity of clusters in constant 
time:
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Non-Hierarchical Clustering

• Typically must provide the number of desired 
clusters, k.

• Randomly choose k instances as seeds, one per 
cluster.  

• Form initial clusters based on these seeds.

• Iterate, repeatedly reallocating instances to 
different clusters to improve the overall clustering.

• Stop when clustering converges or after a fixed 
number of iterations. 
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K-Means

• Assumes instances are real-valued vectors.

• Clusters based on centroids, center of 
gravity, or mean of points in a cluster, c:

• Reassignment of instances to clusters is 
based on distance to the current cluste
centroids.
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Distance Metrics

• Euclidian distance (L2 norm):

• L1 norm:

• Cosine Similarity (transform to a distance 
by subtracting from 1):
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K-Means Algorithm

Let d be the distance measure between instances.
Select k random instances {s1, s2,… sk} as seeds.
Until clustering converges or other stopping criterion:

For each instance xi:
Assign xi to the cluster cj such that d(xi, sj) is minimal.

(Update the seeds to the centroi of each cluster)
For each cluster cj

sj = µ(cj) 
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K Means Example
(K=2)

Pick seeds

Reassign clusters

Compute centroids

x
x

Reasssign clusters

x
x xx Compute centroids

Reassign clusters

Converged!
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Time Complexity

• Assume computing distance between two instances is 
O(m) where m is the dimensionality of the vectors.

• Reassigning clusters: O(kn) distance computations, 
or O(knm).

• Computi centroids: Each instance vector gets 
added once to some centroid: O(nm).

• Assume these two steps are each done once for I
iterations:  O(Iknm).

• Linear in all relevant factors, assuming a fixed 
number of iterations, more efficient than O(n2) HAC.
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Seed Choice

• Results can vary based on random seed 
selection.

• Some seeds can result in poor convergence 
rate, or convergence to sub-optimal 
clusterings.

• Select good seeds using a heuristic or the 
results of another method.
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Buckshot Algorithm

• Combines HAC and K-Means clustering.
• First randomly take a sample of instances of 

size √n
• Run group-average HAC on this sample, 

which takes only O( n) time.
• Use the results of HAC as initial seeds fo

K-means.
• Overall algorithm is O(n) and avoids 

problems of bad seed selection.
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Text Clustering

• HAC and K-Means have been applied to text in a 
straightforward way.

• Typically use normalized, TF/IDF-weighted vectors 
and cosine similarity.

• Optimize computations for sparse vectors.
• Applications:

– During retrieval, add other documents in the same cluster 
as the initial retrieved documents to improve recall.

– Clustering of results of retrieval to present more organized 
results to the user (à la Northernlight folders).

– Automated production of hierarchical taxonomies of 
documents for browsing purposes (à la Yahoo & DMOZ).
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Soft Clustering

• Clustering typically assumes that each instance is 
given a “hard” assignment to exactly one cluster.

• Does not allow uncertainty in class membership or 
for an instance to belong to more than one cluster.

• Soft clustering gives probabilities that an instance 
belongs to each of a set of clusters.

• Each instance is assigned a probability distribution 
across a set of discovered categories (probabilities 
of all categories must sum to 1).
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Expectation Maximumization (EM)

• Probabilistic method for soft clustering.

• Direct method that assumes k clusters:{c1, c2,… ck} 

• Soft version of k-means.

• Assumes a probabilistic model of categories that 
allows computing P(ci | E) for each category, ci, for a 
given example, E.

• For text, typically assume a naïve-Bayes category 
model.
– Parameter θ = {P(ci), P(wj | ci): i∈ {1,…k}, j ∈ {1,…,|V|}}

29

EM Algorithm

• Iterative method for learning probabilistic 
categorization model from unsupervised data.

• Initially assume random assignment of examples to 
categories.

• Learn an initial probabilistic model by estimating 
model parameters θ from this randomly labeled data.

• Iterate following two steps until convergence
– Expectation (E-step): Compute P(ci | E) for each example 

given the current model, and probabilistically re-label the 
examples based on these posterior probability estimates.

– Maximization (M-step): Re-estimate the model 
parameters, θ, from the probabilistically re-labeled data.
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Learning from Probabilistically Labeled Data 

• Instead of training data labeled with “hard” 
category labels, training data is labeled with “soft” 
probabilistic category labels.

• When estimating model parameters θ from training 
data, weight counts by the corresponding 
probability of the given category label.

• For example, if P(c1 | E) = 0.8 and P(c2 | E) = 0.2,        
each word wj in E contributes only 0.8 towards the 
counts n1 and n1j, and 0.2 towards the counts n2 and 
n2j .
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Naïve Bayes EM

Randomly assign examples probabilistic category labels.
Use standard naïve-Bayes training to learn a probabilistic model 

with parameters θ from the labeled data.
Until convergence or until maximum number of iterations reached:

E-Step: Use the naïve Bayes model θ to compute P(ci | E) for
each category and example, and re-label each example 
using these probability values as soft category labels.

M-Step: Use standard naïve-Bayes training to re-estimate the 
parameters θ using these new probabilistic category labels.
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Sem -Supervised Learning

• For supervised categorization, generating labeled 
training data is expensive.

• Idea: Use unlabeled data to aid supervised 
categorization.

• Use EM in a semi-supervise mode by training 
EM on both labeled and unlabeled data.
– Train initial probabilistic model on use -labeled subset 

of data instead of randomly labeled unsupervised data. 
– Labels of user-labeled examples are “frozen” and never 

relabeled during EM iterations.
– Labels of unsupervised data are constantly 

probabilistically relabeled by EM.
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Sem -Supervised Example

• Assume “quantum” is present in several labeled 
physics documents, but “Heisenberg” occurs in 
none of the labele data.

• From labeled data, learn that “quantum” is 
indicative of a physics document.

• When labeling unsupervised data, label several 
documents with “quantum” and “Heisenberg” 
correctly with the “physics” category.

• When retraining, learn that “Heisenberg” is also 
indicative of a physics document.

• Final learned model is able to correctly assign 
documents containing only “Heisenberg” to 
physics. 34

Sem -Supervision Results

• Experiments on assigning messages from 20 
Usenet newsgroups their proper newsgroup label

• With very few labeled examples (2 examples per 
class), semi-supervised EM improved accuracy 
from 27% (supervised data only) to 43% 
(supervised + unsupervised data).

• With more labeled examples, semi-supervision 
can actually decrease accuracy, but refinements to 
standard EM can prevent this.

• For semi-supervised EM to work, the “natural 
clustering of data” must be consistent with the 
desired categories.


