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Outline 

aMotivation
aAlgorithms
`Inter-Intra
`K-Center
`K-median
`TSVQ
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Foundation of Information Retrieval

Three Monumental Challenges
aFormulating a “good” feature space
aFormulating a perceptual distance function
aHaving an efficient clustering algorithm
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What Is Clustering ?

aCluster: a collection of objects that are 
“similar” to one another 

aUsed either as 
`a stand-alone tool to get insight into data 

distribution or 
`as a preprocessing step for other algorithms, e.g., 

to discover classes, and associations between 
classes

aClustering is partitioning of data into 
meaningful groups called clusters.
`To help understand the natural grouping or 

structure in a data set.
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The ?First? Application of Clustering

a A London physician plotted the location of cholera cases on a 
map during an outbreak in the 1850s.

a The locations indicated that cases were clustered around 
certain intersections where there were polluted wells -- thus 
exposing both the problem and the solution.

a Not all clustering is this easy (2 dimensional, small number of 
points.)
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Some Modern Applications of Clustering

aOperations Research
`Facility Location Problem: locate fire stations so as to 

minimize the maximum/average distance a fire truck must 
travel

a Signal Processing
`Vector Quantization: Transmit large files (e.g., video, speech) 

by computing quantizers
a Indexing

`Grouping similar objects together to facility efficient 
similarity searches
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…Applications of Clustering

aMarketing:
`Segmentation of customers for target marketing 
`Segmentation of customers based on online clickstream data

aWeb
`To discover categories of content
`Search results

a In practice, clustering is one of the most widely used 
data mining techniques
`Association rule algorithms produce too many rules
`Other machine learning algorithms require labeled data
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What we need for clustering?

aIn order to cluster, we need 
`Data items (points, sequences)
`A distance function and 
`A method for evaluating our clustering 

results



4/19/2004 E. Chang 9

Points/Metric Space

aPoints could be in Rd, {0,1}d,…
aMetric Space: dist(x,y) is a distance metric if
`Reflexive: dist(x,y)=0 iff x=y
`Symmetric: dist(x,y)= dist(y,x) 
`Triangle Inequality: dist(x,y) ≤ dist(x,z) + dist(z,y)

z
y

x
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Example of Distance Metrics

a The distance between x=<x1,…,xn> and y=<y1,…,yn> is:
`L2 norm: 
`Manhattan Distance (L1 norm):

aDocuments: Cosine measure
`Similarity, not distance

⌧I.e., more similar -> close to 1
⌧Less similar -> close to 0

`Not a metric space, but 1-cosθ is

22
11 )()( nn yxyx −++− L

nn yxyx −++− L11
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yxθ
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What is a Good Clustering?

aA good clustering method will produce 
clusters where
`the intra-cluster distance is small
`the inter-cluster distance is large
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Clustering Quality Measures

• Given a set S of n points in Rd

• K-Center: Find k centers such that the maximum 
radius of a cluster is minimized.

– k-Median: Find k centers that Minimize the Average 
Distance from a point to its nearest center

*
*

*
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Inter-Intra

a Distance between clusters is the minimum distance 
d(x,y) for x and y in different clusters (aka “single-
linkage”) D(C)

a Tightness of a clustering is the maximum diameter of 
any cluster T(C).

aObjective Function: G(C)
`Maximize (Distance between clusters – Tightness)

aNext: An algorithm that finds the optimum solution 
`Most clustering problems are NP-hard.  So this is a rarity.

D(C)
T(C)
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Hierarchical Agglomerative Clustering (HAC)

aStandard clustering approach
`Initially, all points are in own clusters
`Merge two closest clusters
`Repeat
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HAC

aThe Algorithm (More Specific)
`Start with each point in a cluster by itself
`Repeatedly merge the two clusters that are 

closest until there is just one cluster, where

`Output the best clustering generated in this 
process, i.e., output the clustering that 
maximizes D(C) - T(C). 

),(min),(
21 ,21 qpdistCCdist

CqCp ∈∈
=
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Dendogram

a A Dendrogram shows how the clusters are merged 
hierarchically

a A clustering of the data objects is obtained by 
cutting the dendrogram at the desired level, then 
each connected component forms a cluster

0 1 3 9 10 12 15 19 20
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Dendogram

0 1 3 9 10 12 15 19 20

Level 6

Level 5

Level 4

Level 3

Level 2

Level 1

Level 1: D – T = 2.5

Level 2: D – T = 8.4 – 0.5 = 7.9

Level 3: D – T = 8.0 – 1.75 = 6.25  
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HAC still works..
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Single Link Agglomerative

aUse maximum similarity of pairs:

aSimilarity = 1/distance
aCan result in “straggly” (long and thin) 

clusters due to chaining effect.
`Appropriate in some domains, such as 

clustering islands. 

),(max),(
,

yxsimccsim
ji cycxji ∈∈

=
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Single Link Example
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Complete Link Agglomerative

aUse minimum similarity of pairs:

aMakes more “tight,” spherical clusters 
that are typically preferable.

),(min),(
,

yxsimccsim
ji cycxji ∈∈

=
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Complete Link Example
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Dendogram

0 1 3 9 10 12 15 19 20

0 1 3 9 10 12 15 19 20
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Good Things about HAC

aCombines Inter-Intra
aDon’t need to know number of clusters 

k
aHowever, if there is an optimum 

solution with k clusters, HAC might find 
more or less than k.
`Finding optimum solution with minimum 

number of clusters k is NP-hard
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Problems with HAC

aRunning Time: O(n2 * |levels|) = O(n3)
aImagine doing this for the 2-4 billion 

documents on the web.
aOpen question: How to optimize Inter-Intra 

on a large data set or data stream?
aNext: Change the objective function
`Will not be as “general”
`Is very simple to state
`But can cluster large data sets/data streams
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k-Center Problem Definition

Given n points in a metric space, 
find k centers
so as to minimize the maximum distance 
from a point to its nearest center (radius) 
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Discrete vs. Continuous k-Center
a Suppose points in Rd. 
a k centers in S (discrete) or Rd (continuous) ?
a Claim: The best Discrete solution is within a factor 

of 2 of the best Continuous solution.
a Proof: (skip)

`Start with the best continuous solution
`Pick the points in S closest to the continuous solution
`Now bound radius

a Assume Discrete k-Center from now on.
dist(    ,    ) ≤dist(    ,    )+dist(    ,      ) ≤2OPT
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Naïve Algorithm

The Naïve Algorithm: Enumerate all possible k-
clusterings and output the one that optimizes 
the clustering metric. 

– This algorithm is inefficient because there 
are roughly kn different k-clusterings of n
points!

– So, naïve won’t cut it
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k-Center is NP-hard

aClaim: Dominating Set ≤ k-Center
aDominating Set
`Given a graph G=(V,E) and a number k
`Question: Does there exist S ⊂ V such 

that 
⌧each vertex v is either in S or adjacent to S
⌧|S| ≤ k

2-Dominating Set
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k-Center is NP-hard

aTransform: G to a set of points P=V 
where 



 ∈

=
otherwise    2

),( if     1
),(

Evu
vudist

2

1 1 111 11

1 1

1
1

1
1

2 2

2
2

2

2

• Note: Triangle inequality is preserved.
• Note 2 is the 
maximum 
allowable number 
if want to preserve 
triangle inequality
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K-Center is NP-hard, contd
Claim: G has a k
dominating set

2

1 1 111 11

P has a k-center 
clustering of cost 1

↔

Proof:
→ If ∃ k dominating set then ∃ k center clustering with 
cost 1
← If no k dominating set then any k centers have cost 2
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Approximation Algorithm

aUnlikely that there is a poly-time algorithm 
for finding the k best centers.

aCan we find k “close to best” centers?

`c-approximation algorithm.
`c is some small constant

aNext: Show a simple 2-approximation 
algorithm [Gonzalez]

c
k
k

≤
centers optimum  ofCost 

find  wecenters  ofCost 
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c3

c2

c1

ALG:
Select an arbitrary center c1
Repeat until have k centers

Select the next center ci+1 to be the one
farthest from its closest center

Farthest Point Clustering Algorithm, k=4
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Farthest Point Clustering Algorithm, k=4

c4

c3

c2

c1
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Can we do better than a 2 
approximation?

a Claim: There is no poly time algorithm that obtains a 
(2-ε) approximation to k-Center, unless P=NP.
`A (2- ε) approximation to k-Center can solve k-Dominating 

Set

Claim: G has a k
dominating set

2

1 1 111 11

P has a k-center 
clustering of cost 1↔
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How important is metric space assumption?

a Claim: Without metric assumption, k-center cannot be 
approximated to any constant c.

a Transform: G to a set of points P=V where





+
∈

=
otherwise    1

),( if     1
),(

c
Evu

vudist

c+1

1 1 111 11

• We’ve lost triangle inequality.
• A c-approximation to k-center implies an algorithm that can 
distinguish between k dominating set (cost between 1 and c) or 
not (cost between c+1 and c(c+1)).
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Running Time

aRunning Time: O(nk).
ak passes through the data set, each pass 

takes O(n) time.
aWhat if our data is too large to fit in main 

memory?
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Summary

aMaximizing Inter-Intra Cluster Quality
`Conditions under which HAC Algorithm finds 

optimum solution in polynomial time
`Algorithm does not scale

aK-Center
`NP-hard
`Farthest Point Algorithm yields 2-

approximation
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K-Median Problem Definition

Given n points in a metric space, 
choose k medians
so as to minimize the assignment cost: 

the sum of (squared) distances from 
points to nearest centers.
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Single-Pass Algorithm 

a0,1,3,9,10,12,15,19,20
aThreshold = 2

aSort the data, if have not been
a{0}, {0,1}, ({0,1}, {3}) ({0,1},{3},{9})
({0,1},{3},{9,10})…
{0,1},{3},{9,10},{12},{15},{19,20}
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Single-Pass Algorithm 

T1 T2 T3 T4 T5
#1 1 2 0 0 1
#2 3 1 2 3 0
#3 3 0 0 0 1
#4 2 1 0 3 0
#5 2 2 1 5 1

Threshold setting is most critical
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Outline 

aMotivation
aAlgorithms
`Inter-Intra
`K-Center
`K-median
`TSVQ
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Clustering Quality Measures

• Given a set S of n points in Rd

• K-Center: Find k centers such that the maximum 
radius of a cluster is minimized.

– k-Median: Find k centers that Minimize the Average 
Distance from a point to its nearest center

*
*

*
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K-Center not always the “right” clustering measure

0 1 2 3 4 5 6

0 1 2 3 4 5 6
Max radius = 2

0 1 2 3 4 5 6
Max radius = 1.5
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The K-Median Problem = 
Facility Placement Problem

aWe want the facilities to be as 
efficient as possible, thus we want to 
minimize the distance from each client 
to its closest facility.
aThere can be a cost associated with 

creating each facility that also must be 
minimized
`Otherwise if we were not limited to k 

facilities, all points could be facilities
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K-Median Problem Definition

Given D a set of n points in a metric space
choose k medians
so as to minimize the assignment cost: 

the sum of (squared) distances from 
points to nearest centers. ∑

x
ii
cxdist ),(min
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Local Search / K-Median
Where do we place our k facilities?

The Algorithm:

Choose some initial K points 
to be facilities, and calculate 
your cost

Initial points can be chosen 
by first choosing a random 
point, then successively 
choosing the point farthest 
from the current group of 
facilities until you have your 
initial K
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Local Search / K-Median

Now we swap

While there exists a swap 
between a current facility 
location and another 
vertex which improves our 
current cost, execute the 
swap
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Local Search / K-Median

Now we swap

While there exists a swap 
between a current facility 
location and another point 
which improves our current 
cost, execute the swap
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Local Search / K-Median

Now we swap

While there exists a swap 
between a current facility 
location and another point 
which improves our current 
cost, execute the swap

Etc.
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Local Search / K-Median

aIt is possible to do multiple swaps at one 
time

aIn the worst case, this solution will 
produce a total cost of (3 + 2/p) times the 
optimal cost, where p is the number of 
swaps that can be done at one time
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K-Means Algorithm [MacQeen, 1967]

aSelect k centers somehow (e.g., choose k
points in Rd)
aRepeat until k centers don’t change (or 

change very little)
`Partition the data according to the k

centers
`Use the means of the cluster to find k new 

centers
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K-Means



K-means
OPT
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K-Means Issues
aA dense local area can trap a center 
aClustering quality depends on initial K 

points
`How do we know K ?
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More Generally
aPerf(X,M) = ∑ x ∈ X d(x,M)
aK-Means
`d(x,M) = min {||x-m||2 | m ∈ M}

aEM
`d(x,M) = -log (∑ m ∈ M pm x Gm(x))
`Gm(x) = exp(-||x- m||2)

aK-Harmonic Means
`d(x,M) = |M|/∑ m ∈ M 1 / ||x-m||2
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HA (x,y) vs. MIN (x,y)
aK-Harmonic Means
`d(x,M) = |M|/∑ m ∈ M 1 / ||x-m||2

`

`d(x,M) = |M|/∑ m ∈ M 1 / ||x-m||p
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EM (restricted)
aEM with linear mixing of K spherical 

Gaussians
aEM: recursive E and S steps
`E-Step
p(mk|xi) = p(xi|mk) x p(mk)/ ∑i=1,N p(xi|mk) x p(mk)
`M-Step
mk =∑i=1,N p(mk|xi) x xi / ∑i=1,N p(mk|xi)
p(mk) = 1/N ∑i=1,N p(mk|xi)
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Comparison

EM: Red

KH: Black

KM: Blue
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Comparison



4/19/2004 E. Chang 62

VQ

aLinde-Buzo-Gray (LBG) algorithm
Let the codebook size be K and the training vectors be { x(n)| n=1,…,M}

Step 1Step 1 Let the initial codebook C={ y(i) | i = 1,…,K} be  randomly
selected from { x(n)| n = 1,…,M}

Step 2Step 2 Cluster the training vectors into K groups G(i), i =1,…,K, 
where G(i)={x(a) | d(x(a), y(i)) < d (x(a), y(j)); j ≠ i  and 
d(p, q) denotes the distance between p and q}

Step 3Step 3 If the distortion decreases, then go to Step 4 
Else stop

Step 4Step 4 New y(i) =                                 , where |G(i)| = the number of

vector in G(i) ; go to Step 2

∑
∈ )()(

)(
|)(|

1
iGax
ax

iG
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Codebook  Generation

× = training codevectors 
{ = codewords in the codebook
Gi = region encoded into codeword i
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Codebook  Generation
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Any finite set S of n points on the plane gives rise to a cellular 
decomposition of the plane called the Voronoi partition 

� For a codebook Y which 
contains k codevectors,it is 
equivalent to a Voronoi
partition of RD :r1, r2, r3, …, rk, 
where ri={x ∈ RD:Q(x)= Yi}

� With this definition,it follows
that and  ri ∩ rj = 
∅, for i≠ j

D
i

k

1i
Rr =

=
U
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Codebook  Generation

aWhat LBG generate is a local optimal 
codebook

aThe following methods are used to improve 
the codebook 
`Perturbation
`Simulated annealing
`Genetic algorithm
`Etc.
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Codebook  Generation

aCodebook Generation
`Initial codebook

⌧random code
⌧splitting method
⌧pairwise nearest neighbor clustering

`Training codebook
aHow to measure the quality of codebook
`Entropy
`SNR
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Tree  Structured  VQ

aTSVQ reduces the quantizer search 
complexity by replacing full search encoding 
with a sequence of tree decisions.

)3(
1X̂ )3(

2X̂ )3(
3X̂ )3(

4X̂ )3(
5X̂ )3(

6X̂ )3(
7X̂ )3(

8X̂

)2(
1X̂ )2(

2X̂ )2(
3X̂ )2(

4X̂

)1(
1X̂ )1(

2X̂

X
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TSVQ

a Other designs
` Tapered tree structured

⌧Number of branches increases as level increases
⌧Shown to have better performance than tree with 

fixed m branches
` Pruned tree

⌧Start from a complete balance tree, branches that 
contribute the least to the signal fidelity are pruned 
away

⌧Shown to have better performance than full search for 
speech signals
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TSVQ Wrap

aO(N log K)
aRefer to Vector Quantization and Signal 

Compression, by Allen Gersho and Robert M. 
Gray, Kluwer Academic Pub., 1992 for an 
extensive study of VQ.
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Conclusion

aAlgorithms
`Inter-Intra
`K-Center
`K-median
`TSVQ

aKey Components
`Clustering quality measurement
`Inter/intra-cluster distance
`K ? 
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