
1

1

Text Clustering

2

Clustering

• Partition unlabeled examples into disjoint
subsets of clusters, such that:
– Examples within a cluster are very similar

– Examples in different clusters are very different

• Discover new categories in an unsupervised
manner (no sample category labels provided).

3

.

Clustering Exampl

.

.
.
.

. .
. ..

.
.

...
.

.

.
.
.

. .
. ..

.
.

...
.

.

4

Hierarchical Clustering

• Build a tree-based hierarchical taxonomy
(dendrogram) from a set of unlabeled examples.

• Recursive application of a standard clustering
algorithm can produce a hierarchical clustering.

animal

vertebrate

fish reptile amphib. mammal worm insect crustacean

invertebrate

5

Aglommerative vs. Divisive Clustering

• Aglommerative (bottom-up) methods star
with each example in its own cluster and
iteratively combine them to form larger and
larger clusters.

• Divisive (partitional, top-down) separate all
examples immediately into clusters.

6

Direct Clustering Method

• Direct clustering methods require a
specification of the number of clusters, k,
desired.

• A clustering evaluation functio assigns a
real-value quality measure to a clustering.

• The number of clusters can be determined
automatically by explicitly generating
clusterings for multiple values of k and
choosing the best result according to a
clustering evaluation function.

2

7

Hierarchical Agglomerative Clustering
(HAC)

• Assumes a similarity function for determining
the similarity of two instances.

• Starts with all instances in a separate cluste
and then repeatedly joins the two clusters that
are most similar until there is only one cluster.

• The history of merging forms a binary tree o
hierarchy.

8

HAC Algorithm

Start with all instances in their own cluster.
Until there is only one cluster

Among the current clusters, determine the two
clusters, ci and cj, that are most similar.

Replace ci and cj with a single cluster ci ∪ cj

9

Cluster Similarity

• Assume a similarity function that determines the
similarity of two instances: sim(x,y).
– Cosine similarity of document vectors.

• How to compute similarity of two clusters each
possibly containing multiple instances?
– Single Link: Similarity of two most similar members.

– Complete Link: Similarity of two least similar members.

– Group Average: Average similarity between members.

10

Single Link Agglomerative Clustering

• Use maximum similarity of pairs:

• Can result in “straggly” (long and thin)
clusters due to chaining effect.
– Appropriate in some domains, such as

clustering islands.

),(max),(
,

yxsimccsim
ji cycx

ji ∈∈
=

11

Single Link Example

12

Complete Link Agglomerative Clustering

• Use minimum similarity of pairs:

• Makes more “tight,” spherical clusters that
are typically preferable.

),(min),(
,

yxsimccsim
ji cycx

ji ∈∈
=

3

13

Complete Link Example

14

Computational Complexity

• In the first iteration, all HAC methods need
to compute similarity of all pairs of n
individual instances which is O(n2).

• In each of the subsequent n−2 merging
iterations, it must compute the distance
between the most recently created cluste
and all other existing clusters.

• In order to maintain an overall O(n2)
performance, computing similarity to each
other cluster must be done in constant time.

15

Computing Cluster Similarity

• After merging ci and cj, the similarity of the
resulting cluster to any other cluster, ck, can
be computed by:
– Single Link:

– Complete Link:

)),(),,(max()),((kjkikji ccsimccsimcccsim =∪

)),(),,(min()),((kjkikji ccsimccsimcccsim =∪

16

Group Average Agglomerative Clustering

• Use average similarity across all pairs within the
merged cluster to measure the similarity of two
clusters.

• Compromise between single and complete link.

• Averaged across all ordered pairs in the merged
cluster instead of unordered pairs between the two
clusters (why, I don’t really understand).

∑ ∑
∪∈ ≠∪∈−∪∪

=
)(:)(

),(
)1(

1
),(

ji jiccx xyccyjiji

ji
yxsim

cccc
ccsim

� ���

��

17

Computing Group Average Similarity

• Assume cosine similarity and normalized
vectors with unit length.

• Always maintain sum of vectors in each
cluster.

• Compute similarity of clusters in constant
time:

∑
∈

=
jcx

j xcs
�

��

)(

)1||||)(|||(|

|)||(|))()(())()((
),(

−++
+−+•+

=
iiii

iijiji
ji cccc

cccscscscs
ccsim

����

18

Non-Hierarchical Clustering

• Typically must provide the number of desired
clusters, k.

• Randomly choose k instances as seeds, one per
cluster.

• Form initial clusters based on these seeds.

• Iterate, repeatedly reallocating instances to
different clusters to improve the overall clustering.

• Stop when clustering converges or after a fixed
number of iterations.

4

19

K-Means

• Assumes instances are real-valued vectors.

• Clusters based on centroids, center of
gravity, or mean of points in a cluster, c:

• Reassignment of instances to clusters is
based on distance to the current cluste
centroids.

∑
∈

=
cx

x
c �

��

||

1
(c)�

20

Distance Metrics

• Euclidian distance (L2 norm):

• L1 norm:

• Cosine Similarity (transform to a distance
by subtracting from 1):

2

1
2)(),(i

m

i
i

yxyxL −= ∑
=

��

∑
=

−=
m

i
ii

yxyxL
1

1),(
��

yx

yx
��

��

⋅
−

•
1

21

K-Means Algorithm

Let d be the distance measure between instances.
Select k random instances {s1, s2,… sk} as seeds.
Until clustering converges or other stopping criterion:

For each instance xi:
Assign xi to the cluster cj such that d(xi, sj) is minimal.

(Update the seeds to the centroi of each cluster)
For each cluster cj

sj = µ(cj)

22

K Means Example
(K=2)

Pick seeds

Reassign clusters

Compute centroids

x
x

Reasssign clusters

x
x xx Compute centroids

Reassign clusters

Converged!

23

Time Complexity

• Assume computing distance between two instances is
O(m) where m is the dimensionality of the vectors.

• Reassigning clusters: O(kn) distance computations,
or O(knm).

• Computi centroids: Each instance vector gets
added once to some centroid: O(nm).

• Assume these two steps are each done once for I
iterations: O(Iknm).

• Linear in all relevant factors, assuming a fixed
number of iterations, more efficient than O(n2) HAC.

24

Seed Choice

• Results can vary based on random seed
selection.

• Some seeds can result in poor convergence
rate, or convergence to sub-optimal
clusterings.

• Select good seeds using a heuristic or the
results of another method.

5

25

Buckshot Algorithm

• Combines HAC and K-Means clustering.
• First randomly take a sample of instances of

size √n
• Run group-average HAC on this sample,

which takes only O(n) time.
• Use the results of HAC as initial seeds fo

K-means.
• Overall algorithm is O(n) and avoids

problems of bad seed selection.

26

Text Clustering

• HAC and K-Means have been applied to text in a
straightforward way.

• Typically use normalized, TF/IDF-weighted vectors
and cosine similarity.

• Optimize computations for sparse vectors.
• Applications:

– During retrieval, add other documents in the same cluster
as the initial retrieved documents to improve recall.

– Clustering of results of retrieval to present more organized
results to the user (à la Northernlight folders).

– Automated production of hierarchical taxonomies of
documents for browsing purposes (à la Yahoo & DMOZ).

27

Soft Clustering

• Clustering typically assumes that each instance is
given a “hard” assignment to exactly one cluster.

• Does not allow uncertainty in class membership or
for an instance to belong to more than one cluster.

• Soft clustering gives probabilities that an instance
belongs to each of a set of clusters.

• Each instance is assigned a probability distribution
across a set of discovered categories (probabilities
of all categories must sum to 1).

28

Expectation Maximumization (EM)

• Probabilistic method for soft clustering.

• Direct method that assumes k clusters:{c1, c2,… ck}

• Soft version of k-means.

• Assumes a probabilistic model of categories that
allows computing P(ci | E) for each category, ci, for a
given example, E.

• For text, typically assume a naïve-Bayes category
model.
– Parameter θ = {P(ci), P(wj | ci): i∈ {1,…k}, j ∈ {1,…,|V|}}

29

EM Algorithm

• Iterative method for learning probabilistic
categorization model from unsupervised data.

• Initially assume random assignment of examples to
categories.

• Learn an initial probabilistic model by estimating
model parameters θ from this randomly labeled data.

• Iterate following two steps until convergence
– Expectation (E-step): Compute P(ci | E) for each example

given the current model, and probabilistically re-label the
examples based on these posterior probability estimates.

– Maximization (M-step): Re-estimate the model
parameters, θ, from the probabilistically re-labeled data.

30

Learning from Probabilistically Labeled Data

• Instead of training data labeled with “hard”
category labels, training data is labeled with “soft”
probabilistic category labels.

• When estimating model parameters θ from training
data, weight counts by the corresponding
probability of the given category label.

• For example, if P(c1 | E) = 0.8 and P(c2 | E) = 0.2,
each word wj in E contributes only 0.8 towards the
counts n1 and n1j, and 0.2 towards the counts n2 and
n2j .

6

31

Naïve Bayes EM

Randomly assign examples probabilistic category labels.
Use standard naïve-Bayes training to learn a probabilistic model

with parameters θ from the labeled data.
Until convergence or until maximum number of iterations reached:

E-Step: Use the naïve Bayes model θ to compute P(ci | E) for
each category and example, and re-label each example
using these probability values as soft category labels.

M-Step: Use standard naïve-Bayes training to re-estimate the
parameters θ using these new probabilistic category labels.

32

Sem -Supervised Learning

• For supervised categorization, generating labeled
training data is expensive.

• Idea: Use unlabeled data to aid supervised
categorization.

• Use EM in a semi-supervise mode by training
EM on both labeled and unlabeled data.
– Train initial probabilistic model on use -labeled subset

of data instead of randomly labeled unsupervised data.
– Labels of user-labeled examples are “frozen” and never

relabeled during EM iterations.
– Labels of unsupervised data are constantly

probabilistically relabeled by EM.

33

Sem -Supervised Example

• Assume “quantum” is present in several labeled
physics documents, but “Heisenberg” occurs in
none of the labele data.

• From labeled data, learn that “quantum” is
indicative of a physics document.

• When labeling unsupervised data, label several
documents with “quantum” and “Heisenberg”
correctly with the “physics” category.

• When retraining, learn that “Heisenberg” is also
indicative of a physics document.

• Final learned model is able to correctly assign
documents containing only “Heisenberg” to
physics. 34

Sem -Supervision Results

• Experiments on assigning messages from 20
Usenet newsgroups their proper newsgroup label

• With very few labeled examples (2 examples per
class), semi-supervised EM improved accuracy
from 27% (supervised data only) to 43%
(supervised + unsupervised data).

• With more labeled examples, semi-supervision
can actually decrease accuracy, but refinements to
standard EM can prevent this.

• For semi-supervised EM to work, the “natural
clustering of data” must be consistent with the
desired categories.

