
IntroductionToRobotics-Lecture04  

Instructor (Oussama Khatib):All right. Let’s get started. So today video segment is 
about a small device called the Hummingbird. The Hummingbird was developed at IBM 
Watson Research Center, and it was published in the proceeds of ICRA 1992. Female 
Speaker: 

The Hummingbird mini-positioner is a compact device designed for the ultra high speed 
positioning of low mass payloads. Developed for a contact and non-contact probing of 
planar objects, it can probe at over 50 cycles per second with accelerations exceeding 50 
Gs The five bar linkage of the mini-positioner covers a 13 millimeter square workspace. 
To reach larger positions, the entire mini-positioner can be moved. The two main links 
are driven by high performance moving coil actuators, and the link positions are sensed 
by low mass optical encoders. Preloaded bearing pairs at the joint provide high stiffness 
and zero backlash for accurate XY positioning, and a miniature linear servomotor 
provides 1 mm of Z axis travel. The Hummingbird system can generate peak 
accelerations of 50 to 100 Gs in all three axes. To avoid shaking the structure holding the 
mini-positioner, the mechanism is designed to be reactionless during XY motion. The 
dynamically balanced linkage assembly generates no net XY reaction forces during 
motion because the net center of gravity of the moving parts remains fixed for all linkage 
orientations. The net Z-axis reaction torque generated by the two link actuators is actively 
cancelled by a third rotary actuator, which oscillates only very slightly because of its high 
rotary inertia. One of many applications for high speed probing is the electrical testing of 
high-density circuit boards. When driven by a custom multi-transputer servo controller, 
the Hummingbird can provide such testing at unprecedented rates. At 40 tests per second 
as shown here, the camera and the human eye are unable to follow the probe motion. The 
use of a strobe light, however, reveals the three large XY moves and the small Z moves 
in this repetitive pattern. Here a pattern of smaller moves on a 225-micron grid is being 
demonstrated at only 10 tests per second. Two quadrants of the grid are probed 
systematically, while the other quadrants are probed only partially but more randomly. 
Here that same pattern is being probed at 20 tests per second, and finally, the complete 
372 move pattern is performed at a full 50 tests per second. Details of the motion are 
shown in the high-speed video being replayed 33 times slower than real time. Each 
probing cycle contains one XY and two Z moves, and takes only 20 milliseconds to 
complete, yielding a total of 120 distinct moves per second. At this speed, the XY probe 
placement accuracy is approximately 5 microns. To provide a more familiar size 
reference, the probe is shown here above some ordinary table salt. The Hummingbird was 
programmed to contact [inaudible] three selected grains at 49 different locations at a rate 
of 50 probes per second. The inset shows one of the salt grains after probing and the 
characters formed by the tip. The letters are about 140 microns tall with a typical 
[inaudible] spacing of 20 microns.  

Instructor (Oussama Khatib):Unbelievable. Female Speaker: 

The Hummingbird mini-positioner resulted from the interdisciplinary team effort of these 
and many other contributors.  



Instructor (Oussama Khatib):So unbelievable, eh? Well, obviously, when you want to 
move very fast, you have to make everything very light in order to achieve that. If you 
have moving structure, it’s going to be impossible to do it. And now integrating all that 
structure where you can get all the stiffness, avoid vibrations, is not a simple problem. 
Okay, well today’s lecture really now is going to take what we have learned about the 
frame assignment, the descriptions, and take these to a manipulator. What we’re going to 
do is we’re going to take this manipulator and start by looking at a link, and try to see 
how we define this link. And from that description, we’re going to introduce these 
promised description I mentioned earlier, the DH parameters or the Denavit-Hartenberg 
notation that will allow us to describe the link and its connections to the next or previous 
link. This is going to allow us to then precisely define the frames that are going to move 
with the links, but that will also allow us to connect the base through the structure to the 
end-effector. So that will give us the forward kinematics. The forward kinematics is the 
relationship between the lost frame and the base frame. You remember we talked about 
these end-effector placed at some location in space connected through those links to the 
base. So if we have a frame here, if we have a frame at the end-effector, these two rigid 
objects, in between you have all these links and all of them are moving. The question is 
how are we going to define those frames. How are we going to attach frames to the 
different planes? Obviously, you can go to each of the links and say I’m going to go to 
the center of mass of the link and put a frame, and you will still have freedom in 
assigning that frame, but that would be fine. Then you will have to find the relationship 
between frame on the base, link one with your selected frame, and the next frame, and the 
next frame. So if you think about it, let’s say I’m going to put frames at the center of 
mass. This is just one example. What is going to happen in terms of the relationship 
between two successive frames? How many parameters are we going to need to describe 
these two frames? Any idea? Well, you have the frame, another frame. You have a 
homogeneous transformation. How many parameters? Six. All right, now this link we 
know it moves just with one degree of freedom, and there are restrictions, right? So if we 
just go and place frames arbitrarily at the center of mass at any other point, we’re not 
going to take really advantage of the fact that there is some set of constraints associated 
with this mechanism. So the purpose of what we’re going to do is really to take 
advantage of both constraints, and come up with a minimal description that allows us to 
somehow emphasize this variable, this joint variable that is rotating, and have it explicitly 
in the description. So what we’re going to do, we will start with the link description, and 
then we take a look at the link connection, and form there we identify those parameters, 
and we will identify the variables are fixed. The length of the link is fixed. The 
relationship between axes – so if we think about axis I and axis I minus one, there is 
some fixed relationships between those. As we move these axes, there are some 
parameters that are constant. What kind of parameters are constant there? What do you 
see as constant between these two axes?  

Student:The distance?  

Instructor (Oussama Khatib):Distance? Basically, these axes are maintaining a 
distance, right? And in general, these axes are not parallel, so there is a tilt between them, 
and that tilt is going to be maintained. And there are some offsets that will be introduced. 



There is an angle that is taking place that we cannot see it with just the axis. We need to 
assign the frame, and we will start to see that relationship. So the link description, I’m 
going to take two axes, and arbitrary axes so that we will not just take the parallel axis 
case. So axis I minus one and axis I are connected somehow through this link. So if we 
take a link, at the extremities of the link we have the joint axes. So what are the things 
that are constant? So you said distance? How is that going to define the distance between 
two axes? Come on. Faster.  

Student:Perpendicular.  

Instructor (Oussama Khatib):So perpendicular. Perpendicular to a plane, perpendicular 
to an axis, but we have two axes, so it is a common perpendicular, right? Something that 
is perpendicular to both that would measure that distance.  

So if we take this common perpendicular to both axes, then we have a sort of – this is 
going to be unique, right? Except if the axes are parallel. Then you have infinite way of 
placing that common perpendicular. Okay, you agree with that selection? Does it make 
sense? We take the common perpendicular, and that will give us this distance. So we call 
it A – so now you have to pay attention to the notation because we’re going to describe 
link I minus one with the parameter A I minus one, which is the common perpendicular 
to those two axes. So I minus one is the common perpendicular between axes I minus one 
and I. All right. What else do we need to introduce? So if I slide axis I along this common 
perpendicular, and I come to the intersection, there will be an angle, a twist angle. This 
angle, you see it? We slide it up to the intersection, and there will be an angle. We call it 
the link twist, and it is the parameter alpha I minus one, which measures this angle. And 
what we will do is we measure the angle along the vector A I minus one in the right hand 
sense. And you’re going to learn how to use your – everyone knows how to measure the 
angle in the right hand sense? Just make sure you use your right hand. It happens. Okay. 
So we have two parameters. In fact, we’re going to see that in total we need four 
parameters. One of them is variable, the joint angle or the joint displacement if it’s a 
prismatic joint. And now we identify two. Alpha and A are constant all the time, so once 
you design your robot, these alphas, Alpha 0, Alpha 1, are going to be constant. The same 
for A. Now if we look at most mechanisms, we’re going to see that the axes are not 
always apart. Most of the time they are parallel, and sometimes they are intersecting. So 
if we take the PUMA, we have this first joint axis, and then you have the second one, and 
they are intersecting here. If you take the wrist, you have three intersecting axes. So when 
we have intersecting axes, the question is what is the common normal. So you have these 
axes intersecting here. What is the common normal? So we take the plane formed by I 
minus one and I, and take a perpendicular to that plane, and that will be a vector 
perpendicular to both axes. Which direction? So we have this angle, but how do we 
define it? Because I can take a vector in the plane or out of the plane, and that changes 
the direction of the angle. So we have sort of a free variable to decide in which direction 
we’re going to select alpha. Typically what we do is you have the base, and you’re 
moving toward the end-effector, so you are putting this A – the vector A, you are 
pointing the A towards the end-effector, so it is very intuitive to create those vectors. And 
once you have A defined, then you will be able to say well A is in that direction, and now 



I take the angle on the right hand side, or if it is in this direction, you will take it in the 
other direction. Okay? That’s for alpha. Now what we’re going to do next is to connect 
those links. So we defined the link through these two axes, the distance between them, 
the common normal, and the twist. But if we move further, we’re going to have another 
link. Now that other link will have another common normal, right? And this common 
normal will be between axis I and axis I plus one. So that common normal will intersect 
with axis I, right? It will intersect at some location with axis I. So we know this point 
where we have this intersection. Now what we need to do is to introduce this to other 
parameters that define those connections, and obviously this is perpendicular to the axis I, 
so I don’t know if you see this vector. How can you define this vector with respect to this 
line A? I used this color. Can you see it? You see this? This vector? Do you see it? And 
you see this vector? What are the variables that we introduce to define it?  

Student:I assume the angle between the two.  

Instructor (Oussama Khatib):Yeah. There is an angle between the two. That’s correct. 
And this angle can be found if we slide this vector through the plane. We will find it. This 
is going to be – so when the link, that following link is rotating, we will see this axis 
rotating with it and that angle increases and decreases.  

And there is one more parameter, which is the distance, this offset.  

So what we will do is we will project this vector on that intersection point, and then we 
can measure the distance DI. And now you can see the angle. So DI is defined by as the 
link offset, and this D I is going to be constant for revolute joints. But for prismatic joints, 
it’s really the direction along which the joint is going to affect the motion of the 
following link. So DI will be viable if the joint is prismatic. So for a revolute joint, theta 
is the variable. So if like in this figure this is a revolute joint as in here, this theta will be 
the variable. So theta I is called the joint angle, and it’s variable for resolute joints. 
Basically, now we have everything that we need for each of the links. And if we identify 
alpha, A, D, and theta, we will be able to go from one frame to the next as we attach 
frames here, frames there, and propagate. So here is a short movie segment if we could 
put the light a little bit up, please? Lower the light. So we have this manipulator, and it 
was designed to show you different properties about different angles, and you’ll see the 
end-effector moving, carrying an object. So we see axes of Joint 2, Joint 3, 4, 5, 6. So you 
have all these axes of rotation, and now the last joint. So let’s go and go back to the 
beginning so we have one axis here. We have another axis there. And you see this 
distance, this common normal? Do you see it? This is the common normal. So as we 
move this is fixed, but basically – and this is the angle between the axes. So what we’re 
going to do is along this first axis, we’re going to attach a frame. We will see that in more 
detail. And along the X direction, along the common normal, we put the X-axis. So now 
here is a case of common normal between two parallel axes. There are many possibilities, 
but we are not going to make the commitment of the assignment until we place the next 
joint. You see, there is this point, and we don’t want to introduce this route, so we will 
move the common normal there. So these are the rules that we will see in our frame 
assignment. Now that we decided this, that will decide the rest, and little by little we 



build that structure that would allow us to do the frame assignment. So now we are 
assigning the frames, and the frames are assigned along the Z-axis, most of the time at the 
intersection between axes or along the common normals. So this is the frame assigned 
here for this joint, and when we rotate the next joint, you have this angle, so you have 
another frame. When you rotate about this – so all these frames are assigned with the 
same origin. This is the three intersecting axes. You see that? Now there is always an 
additional frame that goes for the object, and often we assign it depending on the task or 
the need. So you end up with a structure like this, basically these frames, and each of 
them is rotating just with one variable. And from there you can go and then build your 
connection from the base to the end-effector, and as your end-effector is moving, it’s 
covering the space. So in the – just coming here, you can start to see the workspace of the 
robot. This is what we call the workspace of the robot, the space where the end-effector 
can be positioned, given the joint limits, given the structure of the robot. There are areas 
inside of this that will not be reachable because there are joint limits on the different 
joints, and you cannot be able to access all these points. So the workspace is the volume 
of this space where we can position the end-effector, and we will discuss this later more 
precisely about the definitions of the workspace, but this is basically what is going to 
happen in terms of how you defined the workspace, where are these configurations that 
are not reachable because of the joint limits, and because of the different length you have 
on your structure. So this is an example of the workspace that we need to study in order 
to position the base of the robot so that the end-effector of the robot can reach in different 
areas. Okay. Let’s go back to the links. So now that we discussed those intermediate links 
and their connections, we need to be a little bit concerned about how we define the 
beginning of the structure that is the frame attached to the base, and how we deal also 
with the last links. There is a lot of freedom there. This freedom comes from the fact that 
those frames can be assigned and moved as long as you are able to find a frame that is 
fixed with respect to that rigid body. So we saw that for axis I, axis I plus one, we are 
taking the common normals, we are taking those twist angles. And if we think about it, 
this AI and alpha I are depending on I and I plus one. So when we say AI, the definition 
of AI and alpha I is going to depend on axis I and axis I plus one, which means that from 
one to N, having those axes will determine A1 to AN minus one and Alpha 1 to alpha N 
minus one. Then now we have to somehow decide about what is A0 and AN, what Alpha 
0 and alpha N, and that comes from the way we define the frame attached to the last link 
and the first link. So there are many different conventions, and those conventions can 
vary following your task and requirement, but essentially what we try to do is to carry in 
the forward kinematics the maximum number of zero parameters because when you put 
an alpha angle of 30 or 40 or whatever, you need to compute the cosine and sine, and that 
introduces more constants. So what you need to do is try to select your frame in a way 
that makes A0 – AN equal to zero. That will simplify the forward kinematics, alpha 0 and 
alpha N to be equal to zero. And we can do it here. So this is Axis 1, and we have Axis 2, 
and 3, etc. So for Axis 0, Axis 0 is essentially connected to the base. It sticks with respect 
to the base, but it has the freedom of being defined, so what you can do is you actually 
can move this axis and make it parallel to Axis 1, and you can even make it coincident 
with Axis 1. And now you can by putting them along the same axis, you are setting A0 
and Alpha 0 to zero. So that simplifies the numbers you are carrying in your forward 
kinematics. Obviously, you might need a different frame, but that different frame can be 



computed with respect to this frame that you are introducing by a constant 
transformation, and you can do that separately. You don’t have to carry it in the forward 
kinematics. So for the end-effector, the problem of the end-effector is that your end-
effector is doing many different things. You are carrying a tool, and now you need to 
compute the forward kinematics to this point. Your tool can change. You are carrying just 
this, and your task is to control this point. Or you are carrying a glass and your 
description is really related to this object. So ultimately, you will need an imposed frame 
by the task itself, but in the forward kinematics, the frame N can be simply – most of the 
time, can be obtained simply by going to the intersection point associated with the wrist. 
And there you get the simplest form of that description. Well, this is not all the time the 
case. Sometimes, we give you specify well I need this frame, and I want you to find that 
transformation to that frame, so you can do it that way. But in general, this frame that is 
associated with the tool, with origin ON plus one that is frame N plus one can be 
arbitrarily placed with respect that last rigid body, and it depends on the tool you’re 
carrying, or the object you’re handling. So for the last link that is for frame N and axis N, 
what we’re going to do is we’re going to remove this frame in the same way and make it 
coincident with axis N, which means that we will have AN and alpha N equal to zero. 
And that simplifies again the forward kinematics. So this the summary that we are really 
moving all these frames, and we are putting the frames for alpha and A, the first one and 
the last one to zero. We still have to decide also about the theta and the D because theta I 
and DI depend on I minus one and I, and that means essentially that now we define theta 
to theta N minus one, and D2 to DN minus one. So we have Theta 1, D1, theta N, and 
DN, and those will be fixed once we decide those other axes. So the convention again is 
you remember theta I and DI, one of the two is constant. Theta I could be the variable. 
The angle theta I, theta angle would be the variable if it is a revolute joint. So in that case, 
DI is constant – DN, basically. So what you want to do is to set the constant parameter 
theta I or DI to be zero. The variable ahs to be variable. So that means if the variable is 
D1, then we make Theta 1 equal to zero, and if theta is the variable, we make D1 equal to 
zero. So here is an example for the first link. What we will do is we selected the axis, we 
reduced those parameters alpha and A, but now what we will do, we will move the point 
that will become the origin of the frame. We will move it to the same point of the 
intersection, reducing this D1 so there is no more D1 and D1 becomes zero. So this is by 
moving the axis, or actually orienting that axis so to make Theta 1 equal to zero. For the 
last link, we are going to do the same thing. We are going to reduce alpha and A, and 
make the selection of the point of that axis to reduce either DN or theta N by selecting the 
direction of that last frame because the last frame associated with that virtual axis N plus 
one is not yet defined, so when you define it, you define that axis. So the result is DN or 
theta N becomes equal to zero. So with this convention and those four parameters, now 
we can essentially – basically, we defined the DH parameters because the Denavit-
Hartenberg parameters are in fact those four parameters that we just saw. That is alpha I, 
AI, DI, and theta I. You have four parameters defining each of the links, and each of – 
three of those parameters are going to be constant. One of them is variable. So in the case 
of prismatic joints, theta I will be the variable. In the case of revolute joints, DI will be 
the variable. The first parameter D1 will be set to – if we have a revolute joint, D1 will be 
set to what? Zero. If it is a prismatic joint, Theta 1 will be set to zero. It’s the same thing 
for DN by the type of the joint. So as I said, three fixed link parameters, and joint 



variable. And this variable is either theta I or DI – theta I for the revolute case, and DI for 
the prismatic case. So as we said, the first two of those parameters, alpha and A, are 
describing the link because we have the link and we have the two axes, and the distance 
AI, alpha I, describe that link. What about the D and theta? What do they do?  

Student:Describe the joint?  

Instructor (Oussama Khatib):Basically, describe how a link is connected to the next 
one. So you have one link, and D will give you this translation between them. If this is a 
prismatic joint, you have one link, you have the other link, and you are describing the 
translation through D. If it is a revolute link, it is going to be this angle. So DI and theta I 
describe the link’s connection that as we go from one link to the next, and how we 
connect them. It is really through this DI or theta I. One of them is variable. Okay. Now 
you know the DH parameters? Good. So actually our task and probably the homework 
will involve computing finding these DH parameters. So you take a link, and you go and 
find alpha I, AI, DI, theta I, and you go through all the links, and once you have them, 
basically you need to use them to compute your transformation. So we need somehow to 
use those parameters in our definition of the frames that we are going to attach so that 
when we go from one frame to the next, we are able to describe the relationship using 
those parameters. So the frame attachment is a very – it will become for you very simple 
once you did a few examples, but it’s very important because the way you attach your 
frames, you will simplify or make it more complex, and we are going to very carefully 
look at this problem and make sure that as we attach the frame, we are going to use these 
parameters in the homogeneous transformation describing the relationship between two 
successive frames. And then we will be able to have that transformation, and then we 
propagate transformations, and we can compute the end-effector with respect to the base 
frame by multiplying out all these homogeneous transformations. So how do we proceed 
with the frame attachment? Any help? What should we do? Where should we start? 
Okay. Take a look. Frames – what is a frame? What is the most critical thing about the 
frame? Origin. Someone said origin. So we really need to decide a rule about how we 
select the origin of those frames. And we also need to decide something about the axes. A 
frame is the origin and the axes, so you have X, Y, and Z. And have to make some 
decision also about the axes, so any good ideas? What selection you would do for your 
X-axis, or Y-axis, or Z-axis? What convention you’re going to – you need to do 
something systematic. So if you noticed what we did, we selected I minus one and I, and 
we said these are the axes, and we are looking at the distance between them, and the 
offset between them. So these axes have a very important role. You want your frame to 
be aligned with those axes. So you want these joint axes to be the axes that define one of 
the vectors, basically – X, Y or Z. So let’s quickly pick one. X, Y, or Z, which one? 
Okay, now all together? Z, yes. So what we will do is – it’s really simple. You have built 
your mechanism. You’ve designed it. Now you have joint axes. Just along this axis, I’m 
going to pick the Z-axis, all right? So we already made a big decision that if we pick the 
Z-axis now, the rest – once you pick the Z-axis, and if you pick the X-axis, their 
intersection is the origin, or you think about where the origin has to be, then you have a 
little bit of freedom, but basically you almost don’t. So the Z-axis is very interesting 
along the joint angle. Why? Because later, when you are going to rotate for instance 



about a joint, immediately you measure the angle theta about that axis, and that is your 
joint angle, and that’s going to be very simple. And if the axes are well selected, you’ll 
end up with just one transformation. So we are going to take the origins as you suggested, 
and this origin has to again make use of the information we just displayed with those 
parameters. What is unique about those parameters? Well, we said we are using the 
common normal. This point of intersection with the common normal is very important. 
So now we’re going to take the origin of our frames at the intersection with the common 
normal. This is the frame that will be assigned along I minus one, and this intersection 
point is very important. Where is the next important point? I know you cannot point 
because you don’t have any pointer, but just try to describe it to me. Yeah?  

Student:Somewhere along the X-axis?  

Instructor (Oussama Khatib):Oh, no, no. I said this is the first origin of this frame. 
Now there is another frame toward the next joint. Where the origin is going to be?  

Student:[Inaudible] about that where [inaudible].  

Instructor (Oussama Khatib):Here? At the intersection of the common normal with this 
point. Right on it. Okay, if you understand this, yeah. But it’s very important. Sometimes 
if you selected down there, you run into a lot of other problems. You’re not using the DI 
parameter properly, and everything becomes – so okay. We take the intersection of the 
common normal with each of the axes and pick that point as the origin. Simple? You’ll 
remember that? Okay. Then we take the Z-axis to be along the joint axis. That’s also 
simple. So ZI minus one will be defined along axis I minus one. And the other one 
obviously is here. Okay? Good. So what is left to define the frame? X-axis. So what do 
we do with that X-axis? So we know the origin, and we’re going to say the X-axis has to 
be somehow orthogonal to Z. And you are proposing to take this orthogonal to be along 
A minus one because this axis A minus one is orthogonal to Z – I minus one because it is 
the axis orthogonal to the joint anyway. So we take, and we take it in this direction. I 
think our problem is solved now because we assigned – we picked the origin. We picked 
the Z. We picked the X. The Y is defined in the right hand rule, so in this case, where is 
Y? Y minus one? It is inside the plane. Okay? X, Y, Z. Right? You know this rule? Like 
this? You have to use your hand. Otherwise, if you end up with the opposite frame, all 
your transformation is going to be wrong. Okay. Good. And XI is along there. Now we 
need to verify that we can go from ZI minus one to ZI using these four parameters. Do 
you think this is possible? So we have two frames. We assign two frames, and we should 
be able to describe this frame with respect to this. That is the homogeneous 
transformation uniquely using these parameters. And we will do it just shortly, but there 
is no problem. We should be able to do it. Okay. This simple illustration of the frame 
assignment is much more complicated because there are all these special cases where you 
have intersecting axes, you have parallel axes, and you have that last frame that is still not 
defined, so you have to see where to define it, and you have freedom that is added, and 
you have to make your selection. And that’s why the convention of always reducing, 
getting zero parameters – so when you’re doing the assignment, you’re going to run into 
a lot of special cases. Hopefully, we will span them in your homework, midterm, and 



finals, so you’ll be mastering that problem. So always remember this right hand rule. It’s 
very important, and try to practice with it if you’re not familiar with it. So the summary 
for the frame attachment is the following. We pick the normals. Okay? You have the 
axes. You pick the normals. Take the intersection, and pick the origins. Along the origins, 
you place your axes. And then you defined the X-axis along the common normals. And 
that’s it. So you have these four steps: finding the normals, the common normals, finding 
the origin of their intersection, taking the Z-axis along the joint axis from the point of the 
origins you selected, and then placing the X-axis. Okay. Now here is the X-axis which 
are placed from the intersection point toward the next link. So let’s see the case of 
intersecting joint axes, which happens very often in the beginning and the end of the 
mechanism. In the beginning, usually Joint 1 and 2 are intersecting, and Joint 4, 5, and 6 
are intersecting. I mean in six degree of freedom manipulators because we use wrists with 
the three intersecting joints. The mechanics of that is well understood and it’s quite easy 
to build. And also, there are a lot of advantages in terms of the workspace and the 
freedom, except they have problems with respect to singularities, as we will see later 
when we study the jacobian that essentially we’re going to run into this case. So we know 
this point, and what we said is that we picked the intersection – we picked the origin. And 
now this is the origin for frame I, and we place the Z-axis, that the question is where do 
you select your X direction, and that defines your – so if you place your XI in this 
direction, your twist angle will be measured about that. So it will be in this sense in this 
direction, and if you place it in the opposite direction – so this is one direction. If you 
place it there, you get a different definition of your alpha I. And that is fine because 
whatever you do, you have this freedom. Once you’ve placed XI, you’ve defined your 
alpha, and you are going to carry that transformation through the propagation, and this 
will be captured in your homogeneous transformation, and because you are going to find 
the next transformation between XI to the next one, everything will work out. So that 
freedom will be accounted for. You can come up with a description that uses the minus 
sign or the plus sign, and that will work out with the next joint. The next joint will 
account for it, and everything will work out. You had a question? Okay. So this direction 
and the sign of alpha depends on your picking of X. So here is an example of the first 
link. I’m taking a revolute link. What we would like to do for a revolute link – if the first 
joint is revolute like in the case of the PUMA, what you would like to do is to almost say 
that the fixed frame and the moving frame are identical when theta is equal to zero. So 
you are really setting A alpha to be zero, and D1 equal to zero for the revolute joint, and 
the only variable is theta, and the zero of theta is when the two frames are identical. And 
that gives you the simplest form. So as you rotate about this joint, you are measuring 
theta from zero to the value of theta. Okay? For a prismatic joint, what you are saying is 
I’m going to take the two frames to be identical. This is imposed. This is your selection 
of the base frame, and you are placing the frame so that when these two are identical, D1, 
the prismatic joint – so you have a translation up and down measured by this variable, 
and when D1 is equal to zero, you have the two frames coincident. So the Frame 0 and 
the Frame 1 are identical when the D1 is equal to zero, your variable is equal to zero. All 
right? For the last link, if we have a revolute link, we are going to select the frame that 
DN equal to zero, which depends on the following frame. That is we are saying DN equal 
to zero, and that frame just measures the angle theta N. And when theta N equals to zero, 
basically we have XN, and N minus one and XN align. Theta measures this angle 



between the X-axes basically, as you rotate. And for the prismatic joint, we do the same 
thing to set theta N to zero. That is we have when DN equal to zero, XN comes down to 
be aligned with XN minus one. So these are the conventions that you are going to try to 
enforce in your frame assignment. And using these, you will end up with the simplest 
form of the forward kinematics, but then as I said again, the tool frame that you will add 
– you will add one more frame that will account for your task. And what is nice is once 
you have all this relation between the base frame and N frame, all the other 
transformations are constant. That is the next transformation will only involve constant 
parameters, so it is a very simple transformation. Okay. Let’s see the total summary now. 
So what we said is we need to introduce for each joint – we need to introduce these four 
parameters, AI, alpha I, theta I, and DI. And what AI is doing, AI is measuring the 
distance between a frame’s ZI – I’m sorry, between axis ZI and axis ZI plus one along the 
XI axis. Alpha I measures the angle between axis ZI and ZI plus one about the XI axis in 
the right hand sense. DI measures the distance between the X-axis, XI minus one, and XI 
along the ZI axis. And theta I measures the angle between the X-axis about ZI. Now this 
summary is very useful. Make a copy of this and keep it next to you. You’re going to be 
confused about the Is you are using and about the definition of these. Make sure that you 
have copy of those definitions not far away, and you will see that this is very useful. So in 
these definitions, we have two distances and two angles. A and D are distances. A 
measure distances between the Z-axes. D measure distances between the X-axes along 
the opposite axes. Okay? Alpha and theta measure angles between the Z-axes and the X-
axes about the other axes. Now what is important is to notice the fact that we’re looking 
at ZI, I plus one, and here we’re looking at XI minus one, XI for the DI. So be careful 
with which I we’re talking about. You’re confused enough to make a copy of it, right? 
Yeah. Keep a copy. I think it is really useful. All right. So let’s take an example, a very 
simple example. I’m going to take a planar robot, and this planar robot is just a set of 
three revolute joints. So we are talking about Theta 1, Theta 2, and Theta 3. So where are 
the joint axes? Someone made a sign I think I understood, but everyone – do you see the 
joint axes? So the joint axes are coming perpendicular to the plane. Okay. So how do we 
pick the origins? In order to pick the origins – so you see three parallel axes. So how do 
we pick the origins? What do you need to do? You need the common normals, right? So 
you have between parallel axes many possible common normals, but because this in the 
plane, we are going to use the common normals in that plane, which is the plane of this 
screen. So where are the common normals from this axis to the next one to the next one? 
Do you see it? Basically, this is the first common normal, the second common normal, 
and if there was a frame there, that would be along – so you know the common normals 
directly from here. So if you have the common normal, the common normal are 
intersecting at this point. So the common normal is intersecting here, intersecting there, 
there, and this will become the origin of those frames that we are going to assign. So for 
Frame 1, the common normal is intersecting here. The Z1 will be out of the page. X1 is 
along the common normal. And Y1 complete the direct frame, so basically you have this 
as the first frame. Right? Any question about this? Really simple. Okay. Do you agree 
with this second one? X2 is along the common normal, and Z2 is coming out of the 
plane, and Y2 completes the frame. And we are placing the last frame. We have the Z3, 
and we are placing the origin, so X3 is taking along the direction perpendicular to the Z-
axis, and along the direction to L3, and that measures the angle Theta 3. So between these 



frames, the only variables that you’re going to see is Theta 1, Theta 2, Theta 3, and now 
you need to introduce the first frame. So for the first frame, we said we are going to 
simplify. We are not going to select a Z0 in an arbitrary direction. We select Z0 along Z1. 
So this way, we will select the X0 to be coincident with X1 when Theta 1 is equal to 
zero. And Theta 1 is measured from here, so X0 will be along this direction. It’s too 
simple. All right. So with this frame assignment, what we’re going to have is the 
following. We defined for each of the joint those parameters, and now we have to 
identify those parameters, and make sure for 1, 2, 3, 4, 6, whatever number of degrees of 
freedom, step by step we are writing down these parameters, so we form a table. And this 
table is like this. You have alpha I minus one, AI minus one that describe the links, DI 
and theta I that describe the connection of this link with this one, and we say joint I1. So 
for joint I, Alpha 0 is equal to 0. There is no angle between Z0 and Z1. No distance 
between the two. It’s zero. No offset – zero. And the only variable is Theta 1. So we’re 
going to go through this one by one, and because of the fact that in this case the only 
variables that are going to be introduced are due to L1, L2 – so L1 measures what? 
Which variable is measured by L1? The A. And that means A1 is going to be L1, and A2 
is going to be L2. And basically now, we have the description and the connection of each 
of the joints, so we build this table. Now you have to note this. Something very important 
is that alpha – we set the value of alpha. Zero. A, we set the value. These are constant. D 
– in this case, it’s all revolute joints, so we set the values. But for theta, I didn’t go and 
measure this is 32 degrees and put Theta 1, replace it with 32 degrees because this is 
going to move. So in this table, I’m setting the variable. If the second joint was prismatic 
joint, the D will not appear as a zero, but it will appear as a variable. So theta or D will be 
a variable depending on the type of the joint. Usually, we add one more column – the 
column where we say configurations shown. In the configurations shown, you set the 
value of the variable. So Theta 1 in the configurations shown is equal to 32 degrees. You 
put 32 degrees in that column if needed. And sometimes, we ask you to measure that 
variable. But now with those four parameters and this table, we should be able to describe 
the forward kinematics. That is we should be able to describe the position and orientation 
of the end-effector. Yes?  

Student:How do you get the position of the end-effector if L3 is this?  

Instructor (Oussama Khatib):Yeah. Right now, I’m going to Frame 3. Now the 
transformation from Frame 3 to that point, that blue point, involves another 
transformation, and sometimes we assign a Frame 4, and we put 4 here, and then you can 
find that transformation. But for now, we are just looking at the wrist point. This is the 
wrist point, and the variable is already in the wrist point. The only thing is a translation 
that is constant. Okay. We’re ready. We’re going now to find the transformation between 
the two frames, and once we’ve found one transformation using these parameters, we will 
generalize it, and we will multiply out all the transformations and find the forward 
kinematics. I see everyone ready. Let’s go. So here is a frame I, and I’m going to 
compute the transformation from I minus one to frame I. And we have these four 
parameters. And you’re going to help me to do it. We need four transformations, four 
parameters. I’m going to use – I mean I can do it directly, but I’m going to use four 
transformations. I will do one at a time. So I think about DI as an operator, and now if I 



use this DI as an operator, I basically slide frame I to some other frame that just use this 
transformation from here to here. So this would be a frame here. Then I rotate this frame 
by theta, then slide it by A, and then [inaudible] it by alpha, and I have four 
transformations, four simple transformations that will give me the total transformation. 
Do you agree? Very easy. So let’s do it. So first transformation I’m going to call this 
transformation that takes me from I down to P, ZP, and then we introduce ZQ rotating to 
this, and then we go here to ZR, and then we take ZR to ZI minus one. So basically, the 
way we’re going to do it, we will move from this frame to this frame to this frame Q to 
this frame, and slide it up, and reach this one. And the transformation between each of 
them involves only one operator. So what is the operator between ZI and ZP? You 
remember those operators that I think we called Q of the vector? So this Q is along the Z-
axis with a distance DI. The second one is a rotation about the Z-axis with an angle theta. 
The next one is a translation about the X-axis. The next one is a rotation about the X-axis, 
and that will lead us to – So if I find the transformation from I to P, P to Q, Q to R, R to I 
minus one, then the total transformation between my transformation and this is the most 
important thing you have. Once you have this expressed in term of the As, Ds, alphas, 
and thetas, then you have a general transformation that you can use in all your frames, 
and then you can build your forward kinematics. So this one as I said is a translation 
about the Z-axis with DI. This one is a rotation about the Z-axis with theta I. This one a 
translation along the X-axis with A minus one, and this one is a rotation about the X-axis 
with alpha I minus one. Just multiply them out. You get your transformation, and we’re 
done. And this transformation is simply this. So you have the answer. You don’t have to 
do it. I have the answer. Look. I to I minus one is given as a function of AI minus one, 
alpha I minus one, DI, and theta. That’s it. So we have this homogeneous transformation 
between this first frame and that final frame, and now we can apply it. Once we have 
these parameters, that is once we form this table, we apply this transformation. We know 
those parameters. We have the homogeneous transformation. Correct? Once you have 
one of those transformation, you can go and multiply transformation between frames. 
You start from frame N, and you go all the way to Frame 0, and you have your 
homogeneous transformation from N to 0, which is now a function of the parameters that 
are constant of the links, the As, and alphas, and D or thetas, and the variables D or theta. 
And with that, you have this information about the position of the end-effector which is 
contained in this transformation, the last vector. Remember? The last vector of this 
transformation contain X, Y, and Z, and the rotation matrix in this transformation 
contains the orientation of the frame with respect to the first frame, so you have your 
forward kinematics. Great. Do we have a homework today? So you’re going to – we have 
something about frame – great. Good. So you’re going to have fun this weekend. All 
right. See you next Monday. 

[End of Audio] 
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