
IntroductionToRobotics-Lecture02  

Instructor (Oussama Khatib):Okay. Let's get started. So as always, the lecture starts 
with a video segment, and today's video segment comes from 1991, and from the group at 
the British Columbia and it deals with Bibet walking so there should be some sound. 
[Video playing]  

[Inaudible]  

Instructor (Oussama Khatib):Well, maybe we need some motors, right. Okay. So today 
we're going to start covering kinematics and kinematics, as I mentioned last time, 
kinematics is very, very important, the models that describe the robot position, the robot 
frames, and links, and joints. So we're going to go over the basics in describing a task, the 
models that we can use to determine the position and orientation of the end-effector.  

Then obviously when we determine the location of a link we need to be able to transform 
that description to the next link or to describe the position and orientation of the end-
effector in our previously link so we need really to handle transformations. Then we need 
to discuss how we represent the position and orientation. There are many different ways 
through which we can describe a position or an orientation, and we will discuss a few 
different representations.  

And I'm going also to describe a little bit what is manipulated, what is a robot arm, and 
then what are these joints, what are the degrees of freedom of a manipulator, how we can 
represent the position of a manipulator. So a manipulator is defined by a set of links 
connected through joints. The first one, the first of the thing is fixed. We call it the base. 
And the last one is actually this gripper. The whole purpose of the manipulator is really to 
move this gripper and place it in space to do manipulation.  

Obviously later, we will see that it is possible to use the body, the links themselves, to do 
manipulation. We call it whole body manipulation. But for now, we are really interested 
in locating this end-effector at the same time locating any other links that is moving. So 
we will see that there are two types of joints that we are going to consider. There will be 
other possible types of joints, but we can see that any set of joints could be reduced to 
those two types of joints, the revolute joints and the prismatic joints. A revolute joint 
allows you to rotate about a fixed axis, and a prismatic joint allows you to translate about 
a fixed axis.  

And this motion is done along or about one axis so it is one degree of freedom motion. So 
as I said we have links and those links are a number of n. We are going to call n is the 
number of moving links plus one base link, the fixed link, and we have joints of two 
types, revolute joints and prismatic joints. So the idea is, we are going to work with one 
degree of freedom and this is interesting because knowing that we have only one degree 
of freedom joints then we will be able to connect to this to the last coordinates, as we will 
see.  



And as I said, if we have a joint like a spherical joint, would you know how many 
degrees of freedom a spherical joint would have?  

Student:Two.  

Student:Three.  

Instructor (Oussama Khatib):Three, yeah. Three. So what we would do is we will then 
use three revolute joints with zero links length, and then we will introduce these joints 
and links to represent a spherical joint. Okay. Now, we have this manipulator in this 
configuration and the question is how can we represent the configuration of the 
manipulator? What would be a good way to represent the configuration because we need 
to know where the manipulator is in space with respect to a fixed frame?  

So there are many different ways. We can go to each link and try to fix that link. So we 
can take maybe a given link and say we are going to locate this link with several vectors, 
lock it there. So if we use like three vectors and three different points the link is defined, 
and that would give us the configuration of that link. Now we are going to use in that 
case three vectors, each vector has three parameters in 3D, so we have nine parameters to 
describe each link, and we have n links, moving links, so we will need nine ends.  

A lot of parameters. And this would be one of the representations. So the description of 
the position using a set of configuration parameters can involve a large number of 
parameters, and each of them is fine. So any set of parameters that describe fully the 
configuration is called a set of configuration parameters. So in this case here we have 
nine parameters per link. Now we are really interested in a particular set of parameters – 
configuration parameters that has minimal number of parameters involved.  

We don't need all these parameters in that three vectors, three points because the points 
are fixed so there is a contrast between these points, and that is going to show us that 
these three vectors are not independent. In fact, we will see that we will be able to 
describe the configuration of the link with much, much less parameters. So that brings us 
to generalized coordinates. So a generalized coordinate is essentially a set of 
configuration parameters that brings parameters that are completely independent, and 
working with those coordinates is very interesting because you can use them to find the 
dynamics later as we will see.  

We can count them, and the number of generalized coordinates gives you directly the 
number of degrees of freedom of your robot. So let's analyze how many parameters you 
would need to describe the configuration of a manipulator with a set of generalized 
coordinates. So we have this manipulator connected through joints, and in order to count 
how many degrees of freedom we have, what I'm going to do, I'm going to remove the 
joints.  

So let's remove these joints.  



Now you have n rigid body in space. Right? If we take one of those rigid bodies, one of 
the links, how many parameters do you need to describe the position and orientation? Six. 
Three for the positions and three for the orientation. So with six parameters we have a 
description of one rigid body. Now we have n moving rigid body. In total, we need 6n. 
Now let's think about those constraints introduced by the joints. If we put back the joints, 
we are going to introduce constraints. Now a joint has one degree of freedom. Right? We 
said one degree of freedom. So how many constraints, the placement of a joint is going to 
introduce? Each joint will introduce how many constraints? Hmm?  

Student:Five.  

Instructor (Oussama Khatib):Five. Exactly. Because it is going to allow only one 
degree of freedom. So if we think about the number of constraints we will see that we 
will have five constraints per joint and that leads to 5n constraints. Yes?  

Student:Would it matter [inaudible] whether it's a position parameter or an orientation 
parameter that's [inaudible].  

Instructor (Oussama Khatib):Well let's look at it. So if we have a joint, it's going to 
introduce constraints on the rotations and the position, so if we place a revolute joint it's 
not going to allow any displacement, and it's not going to allow rotations about octagonal 
axis to the axis of rotations so that's five constraints, three positions constraints and two 
rotation constraints. In the case of prismatic, a prismatic joint is not going to allow any 
rotation; it's just translating, and translating about one axis so the two other axes are 
eliminated.  

It doesn't matter. It is still five constraints. So now, let's do the count. So we said we have 
6n parameters before placing the joints and now we place the joints and we have five 
constraints. So the question to you, how many degrees of freedom are there? It is going to 
be, it is going to be the difference, right? So 6n-5n, the answer is n. Okay. So indeed, we 
have just n degrees of freedom, which is really nice if we have one degree of freedom 
joints and a manipulator in our robot we can be sure that we are going to have n degrees 
of freedom, the number of joints.  

Now I'm talking about a manipulator with fixed base. If I take a humanoid robot and I do 
the same things – at a given configuration if we lock one of the feet of the humanoid 
robot, this is correct, but a humanoid robot can move. So in that case the base is moving, 
and the base has six degrees of freedom. So it will be n plus 6, and fortunately, those last 
six degrees of freedom of the base are not actuated. There are no motors, and that's what 
makes the control for humanoid robots very hard.  

However, in the case of a manipulator, if the base is fixed we have n degrees of freedom 
for n jointed robot. Okay? Clear? Okay. So let's go through the end-effector now. The 
end-effector is this last rigid body in the system so it has all the freedom before to 
position and orient on the end-effector. So we can think about a point on the end-effector 
that we are locating, and we can think also about the orientation of the end-effector, how 



we orient to this end-effector so there is a sort of frame attached to the end-effector 
rotating with it, and that allows us to describe the position and orientation of the end-
effector.  

So if we have just one end-effector in the robot, essentially we have just one rigid body, 
at most we need, depending on the freedom because some robots can only move in the 
plane, some robots can move with restricted rotations or orientations or positions so at 
most we are going to have six degrees of freedom for the end-effector.  

But again, we can represent that freedom of the end-effector that is the configuration of 
the end-effector with many different parameters. So we can talk also about configuration 
parameters for the end-effector and we can see that some of those parameters can be 
dependent and when they are independent they form a set of generalized coordinates and 
then we can have a description of the end-effector using a set of generalized coordinates, 
task coordinates or what we call operational coordinates.  

So if they are just configuration parameters without the condition of independence then 
we can talk about these end parameters describing the position and orientation of the end-
effector. So this is the definition that is we have a set of parameters describing the 
position and orientation with respect to a fixed frame. Let's see, give me an example.  

I need example of a set of parameters that describe the position and orientation of a rigid 
body end-effector. So to describe the position and orientation of a rigid body, this is a 
rigid body, here is a rigid body. I would like to describe the position and orientation with 
respect to this frame. So –  

Student:Well, where the orientation sometimes tilts, yaw and roll –  

Instructor (Oussama Khatib):Okay, you used three angles. If we use like three 
[inaudible], or fixed angles, we can find this orientation for the end-effector. And for the 
position?  

Student:X, y and z.  

Instructor (Oussama Khatib):X, y and z. So we can take a vector and locate one point, 
fixed point. So with one vector and three angles, we can describe the position and 
orientation of the end-effector. Yes?  

Student:Isn't that six parameters?  

Instructor (Oussama Khatib):Perfect. Six parameters.  

Student:But you had said five earlier [inaudible].  

Instructor (Oussama Khatib):Oh, I was talking about how a joint introduces five 
constraints on a rigid body instead of – so imagine the base, imagine the next rigid body, 



it was free completely to move, and now I put a joint, and now it has only one degree 
freedom left.  

Student:Oh.  

Instructor (Oussama Khatib):So, here we have a very nice example of a representation 
that is minimal representation. So anyone can give me other presentation that is not 
minimal?  

Student:[Inaudible] three points [Inaudible].  

Instructor (Oussama Khatib):Select three vectors or three different points. That would 
be nine parameters. So that would be a set of configuration parameters. Where we will 
see also that – have you heard about Euler parameters, how many of them you have? 
Four. So quaternion or – the reason we will see later is that when we use three angles we 
have a problem. We have a problem tracking this rotation continuously. There are 
configuration where the representation becomes singular, and we need a different set of 
parameters really to keep track of the orientation, and we introduce Euler parameters.  

Have you heard about direction cosines? No? Vaguely? Okay. You heard about the 
rotation matrix, we're going to see this in a few minutes, but you heard about the rotation 
matrix, correct? So you have a frame, and you're looking at the relationship between the 
two. Well, the rotation matrix, if you take this rotation matrix between two frames so the 
description of this frame with respect to a fixed frame, essentially if you take this matrix 
which is three columns, three vectors, so it's nine parameters.  

Well if you take that matrix, these three vectors form the so-called direction cosines of 
this frame with respect to this frame. And we can use directly that matrix, that 
description. So we will have nine parameters only for the orientation plus the position 
three parameters, so we will end up with 12 parameters describing the end-effector. And 
we will see why we will go that way or why we go to other parameters, and we will 
examine those singularities of the representation.  

So a particular coordinate that we are interested in this set of independent coordinates, we 
call them operational coordinates or task coordinates. Essentially though, we are looking 
at the operational point where the robot is acting, where we defined the task. For instance, 
the task could be if I'm going to grasp, the task is somewhere in the middle between the 
two jaws as I move this is the point I'm controlling. But if I have a tool the task will be 
here and an operational point would move depending on where I'm going to do the 
interaction.  

So this is – the first definition is operational points so you'll have three degrees of 
freedom, and then you add three degrees of freedom like the three angles to form a set of 
independent parameters and that gives you a set of generalized coordinates or operational 
coordinates. So this number – so before you remember it was m if it was not independent. 



When it is independent we call it m0 to point out this is independent set of parameters, 
and that gives us again the number of degrees of freedom of the end effector.  

So an end-effector of a robot with six degrees of freedom moving in the three 
dimensional space, the end-effector itself can be positioned anywhere, and oriented 
anywhere so it has six degrees of freedom. And that is the most number of degrees of 
freedom it can have. Now if we go to the plane, if we have a robot that's moving just in 
the plane, how many degrees of freedom do you expect to see for the end-effector? My 
plane or robot, it's moving only in this plane. It cannot go out of this plane.  

For the position, how many we need in the plane? Two, x and y. And for the orientation?  

Student:Just need one.  

Instructor (Oussama Khatib):One. Only one. So three. So if we have a plane or robot, 
then we will be talking about m0 = 3. And you have different robots with different 
characteristics that ends up to give you m0 that is equal to 4, or 5 or 6. At most you have 
six for one end-effector. So now we defined operational coordinates or task coordinates, 
we defined joint coordinates. And here is an example if we take a plane or robot, so just 
three revolute joints, ?1 ? 2, ?3, and this robot is moving in the plane. So we have sort of 
representation of the joint, so for here you have 80 degrees, 45 degrees and 50 degree 
representing this configuration of the manipulator.  

One way to think about it is to go and represent this whole manipulator as a point in a 
three-dimensional space, and that space is ?1 ? 2, ?3 and that would be the joint space 
where this point, theta, which is the vector ?1 ?2, ?3, represents the configuration of this 
manipulator. So we call this the joint space or the configuration space. And this space 
plays a very important role in motion planning.  

We talk about configuration space, and we talk about planning motions in configuration 
space. So planning the motion of theta, and we talk also about all these obstacles that we 
have in this space, in the physical space, that we map to that space that becomes 
configuration space obstacles or C obstacles that represent the how obstacles in the real 
world are mapped to that abstract configuration space.  

And then we can do the planning around those obstacles. Now for the end-effector, as I 
said, we locate the end effector with our vector x, y, but that doesn't define completely 
the position and orientation of the end-effector. We need also to define the orientation or 
some angle. So we need alpha, and then x, y and alpha represent fully the position and 
orientation of the end-effector, and that defines the three coordinates, operational 
coordinates for the end-effector.  

And obviously we have with that space, the operational space, which is now the 
combination of x, y for this example, and the orientation alpha of the end-effector and 
that is a point. So the robot is reduced to a point, theta, in configuration space and its end-



effector is reduced to a point x, y, alpha in the operational space, and that represents the 
manipulator and the end-effector.  

Now these two spaces – so the first space is fully describing the configuration of the 
robot, but imagine that we add one more joint on this robot. The end-effector is fixed, but 
the robot configuration can vary because of the redundancy we introduced by adding one 
more joint. So redundancy in this example here you can see we have four joints, and the 
end-effector still has three degrees of freedom.  

So for the same configuration, you have different possible configurations of this 
structure, of the links, and that means we have redundancy. So we talk about redundancy 
and we call the robot redundant if the number of degrees of freedom of the robot, n, is 
greater than the number of degrees of freedom of the end effector m0. So if we have this 
situation, m0 is equal to 3, and m equal to 4 . Then the robot is said to be redundant. And 
redundancy is very important in order to reach and have accessibility.  

You cannot just work with the motion of the robot, for instance three degrees of freedom 
in the plane; you are going to hit obstacles. So when you have redundancy that helps you 
to move around obstacles and position the robot in different configurations. And we 
measure the degree of redundancy by the difference of n and m0. Okay? So essentially, 
we are not going to really discuss redundancy, which is very important, but we are going 
to focus on non-redundant robot first.  

In fact, in the spring, we will cover extensively redundancy. We will talk about the use of 
redundancy to control the robot, make use of the mechanical adventures, the dynamic 
reduction that is introduced by redundancy, and also the motion planning, and collision 
avoidance using redundancy, and how we combine and control redundancy in a way that 
will allow us to achieve a task while redundancy is maintained to achieve different 
criteria, and different goals.  

So redundancy we will not come back to it in Intro to Robotics, but it is a very important 
notion that you need to at least know about in terms of its definition. What we are going 
to do, we are going to go through the basics now, and we're going to start by building the 
models that will lead to the forward kinematics. I'm going to start with the simple 
definition of a vector that is defining a point in space, and we are going to go from there 
to building the models for representing an object in space which requires position and 
orientation, and then we connect to these objects.  

But before that we will talk a little bit about representations of those different parameters 
I mentioned earlier, so we will talk about Euler parameters, we will talk about Euler 
angles and direction cosines, and probably this week we will cover all of that. We will 
cover transformations, how we move between frames and we will be ready next week to 
build the forward kinematics. So a point in space, a point in space be. How can we define 
a point in space? And what are the things that really fix that point or define it with respect 
to some reference?  



So what is really important is to think about a point is the fact that the definition of a 
point, as every one of you probably thinks vectors, right? We can use vectors to define a 
point. But really is going to determine the vector is another point, a reference point. The 
origin that you are using to define the point. If you change the origin, you will change the 
vector. So we will talk about the description of a point with respect to another point to 
some origin, and this point is going to be represented by a vector P, and this vector P will 
describe this point with respect to this origin.  

If we change origin we will change the vector. Okay? So if we have two points we define 
again the origin, and then we will have two different vectors representing this point, and 
these are those vectors built by taking the connection between the origin to the point. 
Very simple. Now I'm insisting in this because now we are going to introduce this origin, 
and then we will be able to describe the vector components.  

So the vector is independent of this X, Y, and Z which frame we are taking. Now we are 
going to put a coordinate frame, and then we can express this vector in that frame. If I 
change the orientation of the frame, the vector is the same. The coordinates, the 
components, of the vector will change. And we are going to be interested in those 
transformations between different descriptions that involve different frames. We will 
work with orthonormal frames X, Y, and Z, and we will go from one frame to another.  

So in this case X, Y, and Z, and we did a small rotation, and so about the same origin, 
and we ended up with a different frame. And we need to know how we can take a 
description of the coordinate of P in the frame X, Y, and Z, and then go to a description 
in frame X prime, Y prime, and Z prime. And this is going to happen using 
transformations. Now this transformation is just rotating the frame about the same point, 
but we might have a prismatic joint, and then we are going to translate the origin, so there 
will be a translation.  

So we need to not only deal with rotation in the fames, but also translations of the frame. 
Well, a frame really is related to something beyond that point. The fact that if we're 
working with points, we just need to really worry about the whole orientation. What is 
really happening is you have different points on a rigid body, and when we rotate we are 
keeping the distance, but the orientation is changing. So a frame is really related to the 
description of the rigid body, so if we take this rigid body, take a fixed point and attach to 
it a frame.  

I'm calling this frame B. So the coordinates are going to be described with respect to both 
axes XB, so this is the frame B, we denote XB, YB, and ZB and the frame itself is B. 
And the question is how we describe the frame B with respect to a fixed frame, A. So as 
you know we need to find the relationship between the origins so there is an origin of 
frame A, an origin of frame B. We need this vector between the two, and that is defined 
by a vector. And this vector is going to locate the origin of frame B with respect to frame 
A, and we have its description in frame A, so this is BA.  



The orientation of the frame is these vectors, XB, YB, and ZB. These vectors can have 
descriptions in different frames. Now we are describing them in frame A, so XB in A, 
and this is the rotation. We denote XB and here we put A to say these are the coordinates 
of XB in frame A. So these vectors are going to describe the rotations of B with respect 
to frame A if it moves.  

So essentially, if you think about those vectors and the relationship with frame A, we are 
really going to find the rotation matrix, which is the first model that we need really to use 
in order to describe the rotations of one rigid body with respect to another rigid body. So 
because we are concerned with just the rotations, I'm going to describe this frame and 
make BA = 0. So we will just move to the origin and just think about the rotation.  

And in this case we will focus only on the rotation matrix and the rotation of that frame 
with respect to frame A. So we are now concerned with the rotation of frame B with 
respect to frame A. This rotation is described by a matrix, it's called the rotation matrix, 
and it has nine components. We are calling them R,1,1; 2,1,3,1, these three columns. 
Okay. I know some of you know very well the rotation matrix. How many of you knows 
perfectly the rotation matrix? I remember. How many of you – okay.  

All right, this is really important, so pay attention. Those of you seeing this for the first 
time, but I'm sure everyone has seen it some form or another. So what I'm going to do, 
I'm going to say state a description of what is the relationship between XB, this vector 
XB, and XA. XB defined in frame B is obtained by this rotation matrix, and the resulting 
vector is XB in frame A. So the description of XB in B is now transformed into a 
description of XB in A using the rotation matrix. What is XB in B?  

Student:[Inaudible]  

Instructor (Oussama Khatib):1, 0, 0. The X vector in its own frame has one unit along 
the x direction, so it's 1, 0, 0. So what about Y? It is the same thing, 0, 1, 0. Right? How 
about Z, 0, 0, 1? These are the unit vector X, Y, and Z in their own frame. Right? And 
now using the rotation matrix we have the description, the component in the A frame. So 
the rotation matrix is basically just this. Right? I'm just using the definition, so if you 
multiply the first column is XB in A, the second column. So what is the rotation matrix?  

The rotation matrix between B and A is simply the component of XB in A, component of 
Y in A and component of Z in A. Okay. So always remember this definition. This is very, 
very important because we are going to find the rotation matrix through many different 
ways, but sometimes you are looking at a problem, and you are looking at the frames, 
look at the component of that frame in the other frame, and you will make sense of your 
result.  

And this is always the definition. The rotation matrix, essentially, the columns of the 
rotation matrix are the component of the axis X, Y, Z of the new frame in the reference 
frame. Okay? All right, so this is the definition of the rotation matrix from B to A, it is 
XB in A, YB in A and ZB in A. So, how to you obtain XB in A? How do you obtain the 



component of XB in frame A? You just dot product. So essentially if you do the dot 
product of XB with XY and Z you will obtain XB in A. Right? You agree? Good.  

So this means the rotation matrix is essentially the dot product of XB with X, Y, and Z; 
YB with X, Y, and Z; ZB with X, Y, and Z. Right? Okay. Good. So, focus on this and 
look, look, look, look, look, at this row. Do you see anything like special? So here you 
have X, X, X, XYZ. Here you have – anything constant? XA, XA, XA. So it's the dot 
product of XA with XB, YB, and ZB. Which is – do you see this? Which is XA in B 
written as a row, which means it's transposed.  

This is really interesting because if we start looking at these properties we see that this 
rotation matrix is either the component of B in A or the transpose of the rows of A in B. 
So B in A, A in B. Inverse relation. Going from B to A; going from A to B. So going 
from A to B we are able to see that it's just the transpose, which means that B to A, the 
rotation from B to A is equal to the transpose of A to B. A to B is the inverse of B to A. 
So we have this property.  

If I'm trying to compute the inverse of the rotational matrix B to A which means it's A to 
B, it is simply B to A transposed. So the transpose of this matrix is simply – I mean the 
inverse of this matrix is simply its transpose. And that's a very important property. And 
this property comes naturally because the rotation matrix formed with these unit vectors 
that are octagonal, so the matrix is called orthonormal and this orthonormal matrix is 
always going to have this property. It's inverse is its transpose. All right?  

Example: So can you compute the – I think you have it – don't look at your notes now for 
this – so could you give me the first column of the rotation matrix from B to A? What is 
the first column going to be?  

Student:[Inaudible]  

Instructor (Oussama Khatib):So it is the component of XB on A and XB on A you see 
XB and XA are aligned. So anyone who can say what are the components?  

Student:[Inaudible]  

Instructor (Oussama Khatib):So 1, 0, 0. What about Y? Y has a component only along 
the Z axis, right? Y is only along the Z axis and zero above others. What about Z? Z has a 
component along the minus Y axis and its four component minus 1, 0, 0. Very simple 
example, but it illustrates what we have done. Essentially what we are doing, we are 
doing either dot product between the two vectors or looking at the component of that 
vector in frame A. At the same time, if you think about this, this is XB in A, YB in A and 
ZB in A. This is our definition. And in the other direction, if you look it is XA transposed 
in B.  

So if you take XA and express it in B, it's going to be 1,0,0 transposed. So these rows 
represent XA in B, XYA in B, and ZA in B. All right. So now we know the rotation 



matrix, let's build finally this representation for a rigid body. So we know how to 
represent the frame, the rotation of the frame. We need the translation of the origin, and 
by combining X, the description of the rotation that is those vectors, and by locating the 
origin of the frame B with respect to A we are going to define fully the frame B with 
respect to frame A.  

So the frame B is essentially defined by this rotation matrix B to A, and by the location of 
the origin with respect to A. Okay. So there is different ways of thinking about the use of 
this rotation matrices. And in fact, we can think about it as we have done so far which is 
to say we have a vector P, we have a frame A and a frame B, and essentially we are 
expressing the component of frame B in frame A and frame B, and we are looking at the 
relationship between the two. So this is what we call mapping. That is, we are changing 
the description of a vector from one frame to another frame, but the vector remains the 
same.  

There is another way of thinking about it, which is – so this is the way we are looking at 
it. You have a Vector P and this Vector P is going to be described by it's dot product with 
A to give you its component in A, and this is the same thing, I'm just removing the vector 
outside and putting it as a matrix so it's A transposed, Y and Z transposed. You see this 
writing? It's the same writing, right? Here I'm doing dot product and just if you move P 
outside, it means that you are doing that multiplication with the different rows.  

So now if you have this relation, you can say P can be expressing any frame. I mean this 
operation could be represented in any frame which is let's select B, the frame B or C or 
D, but you have to be consistent. You have to take the same description. And if you do 
that, essentially you are obtaining that mapping. That is, you are obtaining P in B rotated 
to give you P in A. So this is changing the description of the same vector P from one 
frame to another frame.  

In the translation we are going to start by considering the one problem but while 
maintaining the same orientation of the frame. So I'm going to slide this frame and 
change the location of the origin of the frame. So frame B and frame A has the same 
orientation, and we're going just to move along the direction of the vector P. So if we 
have a vector – if we have a point in space, it is located with respect to origin B and 
described by the vector P. The same point in space is described with respect to another 
origin A with a different vector PA.  

So it is the same point, but described with respect to two different points – two different 
origins attached to two different frames, and you end up with two different vectors. So 
this was our initial description in frame B and now we have a new description and this 
transformation is resulting in two different vectors. You have to realize contrary to the 
case when we were doing just rotations, now when we do our translation we are going to 
change the description by changing the vectors involved in the description.  

So this operation that involves a translation of a vector P defining this origin of the frame 
B, it's changing the description from origin B to origin A. And the relationship between 



the two, that is the relationship between the green vector and the red vector, is essentially 
this relation that is giving us the vector with respect to A – origin A, as the sum of the 
vector with respect to origin B and the translation of the origin. So this fact that we have 
now two different vectors is going to appear later in the homogenous transformation, and 
make the transformation a little bit different from rotation matrices because we are 
introducing a translation, and we are introducing this non-homogenous relation in the 
model.  

So when we come to general transformation, so now I'm saying I'm going to have a 
description of the same point P, but with respect to a [inaudible] frame B that is rotated 
with respect to A. Then we need to account for this rotation, and that means that in the 
description here it's not simply the sum, but I have to do the sum with respect to 
descriptions in the same frame. That is, I cannot add this vector directly with this vector. I 
need to rotate this vector to frame A.  

And that means we have this general relation, that is we take the description of B, we 
rotate it to frame A, we have its description of A and we have the origin description of A, 
and now we can add them together and the result is this vector. We haven't changed 
anything. We still are talking about this vector plus this vector equals this vector. But 
what we have to make sure is that this description is rotated correctly to frame A. All 
right.  

Well this is the general transform, and in fact, using this – applying this between links we 
should be able to compute and propagate, go from this link to the next to the next to the 
next. But this description is not simple to carry when you have multiple links because you 
don't – it's not like a rotation matrix where with our rotation matrix if you know the first 
rotation with the frame with respect between two frames, and you know that the two are 
rotated with respect to a different frame, all that you need to do is to multiply the rotation 
matrices.  

In here, you have to carry sums and you have to carry those relations. So a better way to 
handle this transformation is to try to put it homogenous form. How can you do that? 
This is the sum of two vectors in three dimensional space. You cannot have it in 
homogenous form. But if you go to four dimensional space, then you can put it in 
homogenous form. Do you want to see how? Hmm? Yeah. Okay. So I'm just relating the 
same thing and I'm going to just add one more row for nothing. So this row is saying 1 is 
equal to 1.  

If you multiply this vector by this matrix, you obtain the first relation. Right? And the 
second part is 1 = 0 multiplied by the vector P+1. So 1 = 1. But now we have captured 
the homogenous property that is this vector is transformed into this vector, this 
description is transformed into this description using the rotation matrix and the 
translation. Do you see that? And this is what we call the homogenous transformation. It's 
a 4 x 4 matrix. You have four components that are doing nothing except help the math to 
make this transformation homogenous in that when we go from A to B to C to D, then 



essentially we are going just to multiply matrices, but we have to handle 4 x 4 matrices 
instead of 3 x 3 matrices. Okay.  

So this is a very important component. Now by the way, sometimes 0, 0, 0, 1, the 
definition is on the top so sometimes you define 1P instead of – but it is exactly the same 
computation. So here is an example of the homogenous transformation. Now we have 
two vectors. I'm taking the frame, you remember the example we saw earlier? The 
example where we had a rotation matrix with rotating about the X axis. So I'm just 
translating now the origin of B with this vector 0, 3, 1. So the homogenous 
transformation so it is the same rotation matrix as before and 0, 3, 1 is the vector 
describing the origin of frame B in frame A, and your homogenous transformation is 
here.  

And now using this homogenous transformation you can compute the new position of the 
point B so the point B in frame B is described by 0, 1, 1. This is the point I'm looking at. 
And to find this vector, all that you need is to take this transformation and multiply this 
vector by this transformation that you have to add 1. So we take the 0, 1, 1, we add 1 and 
the multiplication leads to 0, 2, 2, and 1. You drop the 1. The answer is 0, 2, 2. So if you 
look over there, this was happening in this plane so essentially here we have 1 and this is 
2 and 1 and 2. So it's just 2, 2. Okay? Clear? Okay.  

Now that you understood everything, I'm going to confuse you. I mean once you 
understood nothing now we'll have to completely change the intuition. Now instead of 
mapping we are going to – so a rotation matrix I said allows you to describe the same 
vector in two different frames. But now I'm going to take the rotation matrix and use it to 
rotate a vector. So the vector was here; I'm going to rotate it by the rotation matrix. So I 
said the mapping is changing descriptions. Okay? An operator is moving those points in 
space. Well that could be useful.  

So you have a vector, you have one frame, you have a description. Another frame, you 
have a description. Now what I'm going to do, I'm going to do a rotation and this rotation 
will rotate the vector. So in fact a rotation matrix which could describe the relationship 
between the component of the same vector in two different frames in this way, can be 
also used as an operator that would operate on the vector P1 to produce a vector P2. And 
this is really useful later when we compute representations you will find very useful to 
compute transformation between different frames.  

So R here is operating on P1 to produce P2. Okay? So P2 is the rotation applied to the 
vector P1. And of special interest are those rotations that take place about some specific 
axis like the X axis or the Y axis or the Z axis with some rotation. So then you can talk 
about RX with some angle theta, and that will be very useful in some of the operations. 
So in general we can talk about a rotation about a K vector, not the X,Y,Z, but any 
arbitrary vector. And it rotates a vector P1 into vector P2.  

So here is an example. This is a rotation about the X axis so the X axis is 1, 0, 0 and the 
rotation about the X axis is a theta, it is cosined theta minus sign, you know this familiar 



matrix rotation above the X axis. So if you take P1 which has component on Y and Z so 
it's 0, 2, 1. If you take this matrix, you will end up with 0, 1, 2 which is over there 1, 2. 
You see P1 and P2? So this is the vector 0, 2, 1, 2 and 1, and now 0, 1, 2, is 0, 1, and 2. 
Translations. The same thing.  

We can now instead of describing a point with respect to two different frames we are 
going to translate that point using an operator. So in the mapping we took the vector with 
respect to B and produced a vector with respect to A in the operator. In the operator this 
is what is happening. We are changing the point. We are going from P2 to P1 so this 
point P1 moved so we have two different points and two different vectors. So when you 
are translating you are thinking about it like in the rotation.  

In the rotation we had the vector, we have P1 we rotated to P2 now we have here a vector 
P1 with this translation is essentially is producing this point.  

So I have to remove this, you can see it better. So we are moving P1 to P2 with the 
translation Q. So P2 is P1 + Q. So this is an operator of translation and you have this 
operator of Q along the X axis, Y axis, Z axis or any arbitrary vector. So a translation 
through the operator Q would result into a different vector P2 and now you have to 
describe it.  

You can describe it in frame A or any other frame, but through always maintaining the 
same description for all the vectors when you apply the components for describing the 
frame, you have to make sure that q is described in the same frame as P1 and the result 
will be in the same frame. So now we can think about this operator as this operator 1, 1, 1 
that there is no rotation at all, but there is only translation QX, QY, QZ, and this is 
defined by the Q vector. So the translation is done by QX, QY, and QZ. And now you 
can combine the two.  

You can combine the rotation and translation so you could have an operator operating by 
translating and rotating. So the general operator that you can imagine is this operator 
rotating about some vector k with some angle theta and translating Q. So the point B 
which was in P1 now is rotated and translated, and the result is P2. And this is without 
any definition of the frame then you define the frame in which you want to express all 
these vectors, but you have to make sure that you are using the same frame for all the 
operations.  

So this is the most general form of transformation to a different a point. It is the same 
homogenous transformation. It is the interpretation of that transformation whether it is 
changing the description or operating and changing the points. Okay. Are you enough 
confused? Good. So two things, we saw the transformation – it is the same homogenous 
transformation that has two components rotation, translation. Rotation matrix. Translation 
of the origin of those frames.  

And that can give us mapping changing the description, and I just discussed the other 
interpretation that you could have which is to change the vector itself, and that means 



change the points describing those rotations. So when you rotate a vector you are going 
from one point to another point or when you are translating you are going from one point 
to another and you can apply both of them.  

And now we're going to look at the inverse. Now in the case of rotations, the inverse is 
very simple. What is the inverse of R? Rotation matrix from B to A? Transpose. Now for 
the homogenous transformation this is not the case. We cannot just say it is transposed 
that is this matrix is not orthonormal because the presence of this translation.  

So the inverse is not exactly the transpose of this matrix, but it is almost because if you 
look at the inverse of this matrix it involves the transpose – because if you take it by 
block you will see that you have the inverse here, this is the same, the only thing you 
have here is the description of the inverse of this vector.  

What is this actually? I mean if we were thinking about this inverse it is going from A to 
B. So this is the origin of A in frame B. So basically you are just writing here the origin 
of frame A in B. That's it. Okay? So now we now the forward, we know the inverse of 
the homogenous transformation, and it is going to be essential.  

The homogenous transformation we're going to use it to describe the kinematic chain of 
the manipulator, and you will see that this transformation could be described by those 
four parameters, the DH parameter so we will be able to describe each relation between 
successive links just using four parameters, the DH parameters.  

So I will not reveal the movie segment for next time, but unless you have any questions 
we can stop here. Any questions? No. Okay. We'll stop here and we'll see you on 
Wednesday.  

[End of Audio]  

Duration: 68 minutes  


