
Introduction to Robotics (CS223A) Homework #6 Solution

(Winter 2007/2008)

1. Consider the 1-DOF system described by the equation of motion, 4ẍ+20ẋ+25x =
f .

(a) Find the natural frequency ωn and the natural damping ratio ξn of the
natural (passive) system (f = 0). What type of system is this (oscillatory,
overdamped, etc.) ?
Using Section 7.2.2 from the course reader, we can compare this sytem with mẍ + bẋ +
kx = 0 like in Equation 7.9. Thus:
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Since ξn = 1, this system is critically damped.

(b) Design a PD controller that achieves critical damping with a closed-loop
stiffness kCL = 36. In other words, let f = −kvẋ−kpx, and determine the gains
kv and kp. Assume that the desired position is xd = 0.
The original system is:

4ẍ + 20ẋ + 25x = f

with input force f . The controller provides this input, using the formula:

f = −kvẋ− kpx

So, the closed loop equation is:

4ẍ + 20ẋ + 25x = −kvẋ− kpx

⇒ 4ẍ + (20 + kv)ẋ + (25 + kp)x = 0

This closed loop system behaves just like the natural dissipative system in Section 7.2.2
of the course reader. So, we first compare to Equation 7.9:

4ẍ + (20 + kv)ẋ + (25 + kp)x = mẍ + bẋ + kx = 0

The closed loop stiffness is given by k, the coefficient of the positional term, so:

k = 25 + kp = kCL = 36

For the damping requirement, we need to first figure out how the control gains kp and
kv affect the damping ratio ξ; we do this by applying Equation 7.12 to our system:
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For critical damping:
ξ = 1

so the coefficient b of ẋ must satisfy

b = 2
√

km = 2
√

36 · 4 = 24

Based on our closed loop equation, we have:

b = 20 + kv

so the gains that we need are
kp = 11, kv = 4

and the PD controller is
f = −4ẋ− 11x

(c) Assume that the friction model changes from linear (20ẋ) to Coulomb fric-
tion, 30sign(ẋ). Design a control system which uses a non-linear model-based
portion with trajectory following to critically damp the system at all times
and maintain a closed-loop stiffness of kCL = 36. In other words, let f = αf ′+β
and f ′ = ẍd − k′v(ẋ − ẋd) − k′p(x − xd). Then, find f ,α,β,f ′,k′p and k′v. Note that
f is an m-mass control, and f ′ is a unit-mass control. Use the definition of
error, e = x− xd.
The differential equation for the system is now

4ẍ + 30sign(ẋ) + 25x = f

In order to linearize it, we apply a force f of the form

f = αf ′ + β

where
α = 4, β = 30sign(ẋ) + 25x

For purposes of control, this makes the system look like the unit-mass system:

ẍ = f ′

to which we apply the control

f ′ = ẍd − k′v(ẋ− ẋd)− k′p(x− xd)

Substituting into our unit-mass system yields the equation

ë + k′v ė + k′pe = 0

where e is the position error, e = x− xd.
Now, we want to choose our gains k′p and k′v so that we achieve critical damping and the
desired closed-loop stiffness.
To look at the closed loop stiffness, we need to consider the controlled system before
factoring out the mass:

4ẍ + 30sign(ẋ) + 25x = αf ′ + β

⇒ 4ẍ = αf ′



⇒ 4ẍ + αf ′ = 0

⇒ 4(ẍ− ẍd) + 4k′v(ẋ− ẋd) + 4k′p(x− xd) = 0

⇒ 4ë + 4k′v ė + 4k′pe = 0

The coefficient of the e term is the closed loop stiffness, so: k′p = 9.
In order to have critical damping, we need to have ξ = 1. Using Equation 7.12 we see
that the coefficient of ė must be:

k′v = 2
√

k′p = 6

Thus, the control is

f = αf ′ + β

α = 4
β = 30sign(ẋ) + 25x

f ′ = ẍd − 6(ẋ− ẋd)− 9(x− xd)

(d) Given a disturbance force fdist = 4, what is the steady-state (ë = ė = 0) error
of the system in part (c)?
We can analyze the error by observing the error in the unit-mass system. With a
disturbance force added, the system’s equation of motion becomes

4ẍ + 30sign(ẋ) + 25x = f + fdist

To linearize the system, we apply a force of the same form as before:

f + fdist = 4f ′ + 30sign(ẋ) + 25x + fdist

= 4
(

f ′ +
fdist

4

)
+ 30sign(ẋ) + 25x

This yields a unit-mass system as before, but now it has a disturbance force of fdist/4,
so the unit-mass system now looks like

ẍ = f ′ +
fdist

4

With the control from before, we get a unit-mass closed-loop system of

ë + 6ė + 9e =
fdist

4

For the steady state, when ẍ = ẋ = 0, we get

9e =
fdist

4

So, the steady state error is given by

e =
fdist

4 · 9 =
4
36
≈ 0.111

2. For a certain RR manipulator, the equations of motion are given by
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(a) Assume that joint 2 is locked at some value θ2 using brakes and joint 1
is controlled with a PD controller, τ1 = −40θ̇1 − 400(θ1 − θ1d). What is the
minimum and maximum inertia perceived at joint 1 as we vary θ2? What
are the corresponding closed-loop frequencies?
For joint 2 locked (θ̈2 = θ̇2 = 0), the equation of motion for joint 1 is:

(4 + c2)θ̈1 = τ1

The inertia seen at joint 1 is the coefficient of the θ̈1 term, (4 + c2). So, this inertia
achieves its maximum and minimum values at θ2 = 0 and θ2 = 180◦:

mmax = 5, mmin = 3

The closed-loop equation for joint 1 is

(4 + c2)θ̈1 + 40θ̇1 + 400(θ1 − θ1d) = 0

To get an expression for closed loop frequency, we compare our closed loop equation
with the generic system of Equation 7.9 (mẍ + bẋ + kx = 0).
The closed loop frequency is then given by:
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So, we have

m = mmax ⇒ ωmin =
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(b) Still assuming that joint 2 is locked, at what values of θ2 do the minimum
and maximum damping ratios occur? What are the minimum and maximum
damping ratios?
To get an expression for damping ratio, we once again compare our closed loop equation
with the generic system of Equation 7.9 (mẍ+bẋ+kx = 0). In this case, using Equation
7.12 the closed-loop damping ratio is given by:
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So, the minimum and maximum values of ξ occur at θ2 = 0 and θ2 = 180◦:

ξmin =
1√

mmax
=

1√
5

ξmax =
1√

mmin
=

1√
3

(c) Now assume that both joints are free to move, and that this system is
controlled by a partitioned PD controller, τ = ατ ′ + β. Design a partitioned,
trajectory-following controller (one that tracks a desired position, velocity
and acceleration) which will provide a closed-loop frequency of 10 rad/sec



on joint 1 and 20 rad/sec on joint 2 and be critically damped over the entire
workspace. That is, let

τ ′ = θ̈d −
[

k′v1
0

0 k′v2

]
(θ̇ − θ̇d)−

[
k′p1

0
0 k′p2

]
(θ − θd),

then find the matrices α and β and the vector τ , along with the necessary
gains k′vi

and k′pi
.

The equations of motion are of the form

M(θ)θ̈ + V (θ̇, θ) = τ

to which we apply a vector of torques τ of the form

τ = ατ ′ + β

To make this look like a unit-mass system, we let

α = M(θ), β = V (θ̇, θ)

which gives the unit-mass system
θ̈ = τ ′

To this system, we apply the control

τ ′ = θ̈d −
[

k′v1
0

0 k′v2

]
(θ̇ − θ̇d)−

[
k′p1

0
0 k′p2

]
(θ − θd),

This yields two closed-loop equations

ë1 + k′v1
ė1 + k′p1

e1 = 0
ë2 + k′v2

ė2 + k′p2
e2 = 0

where ei is the error at joint i, ei = (θi − θid). Now, we need to choose k′vi
and k′pi

to achieve critical damping, and to achieve our desired closed-loop frequencies. For a
unit-mass system, we choose

k′pi
= ω2

i

k′vi
= 2ξiωi

So, we get
k′p1

= 100, k′v1
= 20

k′p2
= 400, k′v2

= 40

(d) If θ2 = 180◦, what is the steady-state error vector for a given disturbance
torque, τdist = [2 4]T?
The controlled system, with a disturbance torque τdist is

M(θ)θ̈ + V (θ̇, θ) = τ + τdist

Substituting in our form for τ = ατ ′ + β yields

M(θ)θ̈ −M(θ)τ ′ = τdist



This has the form
M(θ)

[
ë + K ′

v ė + K ′
pe

]
= τdist

where e is the error vector e = θ − θd, and K ′
v and K ′

p are the matrices given by

K ′
v =

[
k′v1

0
0 k′v2

]
, K ′

p =

[
k′p1

0
0 k′p2

]

In the steady state (ë = ė = 0), the equation is

M(θ)K ′
pe = τdist

which means that the steady state error is

e = (M(θ)K ′
p)
−1τdist

For our values, this is:

e =

([
3 0
0 1

] [
100 0
0 400

])−1 [
2
4

]
=

[
300 0
0 400

]−1 [
2
4

]
=

[
1

150
1
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]


