
Introduction to Robotics (CS223A) Handout

(Winter 2006/2007)

Homework #5 solutions

1. (a) Derive a formula that transforms an inertia tensor given in some frame {C}
into a new frame {A}. The frame {A} can differ from frame {C} by both
translation and rotation. You may assume that frame {C} is located at the
center of mass.

Solving this problem involves using the Parallel Axis Theorem to translate the inertia
tensor to a frame at a different location, and a similarity transformation to rotate it into
the new frame. These operations can be done in either order, as long as we’re careful
that the vectors we use are expressed in the correct frame. However, it is definitely easier
to do the rotation first.
Assume that we have A

CT , the transformation from frame {C} coordinates to frame
{A} coordinates, which contains the rotation matrix A

CR and the translation vector ApC

which locates the origin of frame {C} with respect to {A}. Let’s first solve the problem
by a rotation followed by a translation. Consider an intermediate frame {C ′} which has
the same origin as {C}, but whose axes are parallel to frame {A}. Using a similarity
transformation (see p. 134-135 of Lecture Notes), we know that

C′I =C′
C RCI

C′
C RT

However, since frame {C ′} has the same orientation as frame {A}, we know that C′
C R =A

C

R, so
C′I =A

C RCI
A
CRT

We now have the inertia tensor expressed in the intermediate frame {C ′}. Since {C ′} is
parallel to {A}, we can use the Parallel Axis Theorem to transform C′I to AI. To use
this theorem, we just need the vector ApC′ that locates the center of frame {C ′} with
respect to {A}, expressed in frame {A}, which yields the formula

AI = C′I + m
[
(ApT

C′
ApC′)I3 − ApC′

ApT
C′

]

where m is the total mass of the object and I3 is the 3× 3 identity matrix. Since {C ′}
and {C} have the same origin, the vector ApC′ is just ApC . Substituting this value and
our previous expression for C′I yields:

AI =A
C RCI

A
CRT + m

[
(ApT

C
ApC)I3 − ApC

ApT
C

]

Equivalently, we could do this problem with a translation first, and then a rotation. To
do that, we can define an intermediate frame {A′}, which has the same origin as {A},
but whose axes are parallel to {C}. We can get the intertia tensor in the intermediate
frame by using the Parallel Axis Theorem. To use it, however, we need the vector A′pC

which locates the origin of frame {C} with respect to frame {A′}, expressed in frame
{A′}. Using this formula with the vector expressed in frame {A} is incorrect. We can
get A′pC by rotating ApC with A′

A R = C
AR, and then simplify:

A′I = CI + m
[
(A′pT

C
A′pC)I3 − A′pC

A′pT
C

]

= CI + m
[
(C
ARApC)T (C

ARApC)I3 − (C
ARApC)(C

ARApC)T
]



= CI + m
[
ApT

C(C
ART C

AR)ApCI3 −C
A R(ApA

CpT
C)C

ART
]

= CI + m
[
ApT

C
ApCI3 −C

A R(ApA
CpT

C)C
ART

]

Then, to get the inertia tensor in frame {A}, we can use a similarity transformation to
rotate A′I:

AI = A
A′R

A′I
A

A′R
T =A

C RA′I
A

CRT

= A
CR

(
CI + m

[
ApT

C
ApCI3 −C

A R(ApA
CpT

C)C
ART

])A

C
RT

= A
CRCI

A
CRT + mA

CR
[
ApT

C
ApCI3 −C

A R(ApA
CpT

C)C
ART

]A

C
RT

= A
CRCI

A
CRT + m

[
(ApT

C
ApC)A

CRI3
A
CRT −A

C RC
AR(ApA

CpT
C)C

ART A
CRT

]

AI = A
CRCI

A
CRT + m

[
(ApT

C
ApC)I3 −A pA

CpT
C

]

This is the same expression that we got from the other approach.

(b) Consider, for example, the uniform density box shown below. It has mass
m = 12kg, and dimensions 6m× 4m× 2m:

ZC

CY

XC

ZA

YA

XA

4

6

2{A}

{C}

Frame {C} lies at the center of mass of the box, and the coordinate axes are
ligned up with the principal axes of the box. In other words, YC is aligned
with the long axis of the box, and XC and ZC are aligned with the short axes
of the box.
Compute the inertia tensor of the box in frame {C}.

Here, we just put numerical values into the formula given in the homework, to get:

CI =




40 0 0
0 20 0
0 0 52




(c) Given the transformation matrix from {C} to {A}:

A
CT =




1√
2

− 1√
2

0 1
1√
2

1√
2

0 1

0 0 1 2

0 0 0 1






use your formula from part (a) and your inertia tensor from part (b) to
compute the inertia tensor of the box in frame {A}.
We apply our formula from part (a). In this case, from A

CT , we know:

A
CR =




1√
2

− 1√
2

0
1√
2

1√
2

0

0 0 1


 , pC =




1
1
2




The first part of the transformation (into the intermediate frame {A′}) is

A′I =A
C RCI

A
CRT =




1√
2

− 1√
2

0
1√
2

1√
2

0

0 0 1







40 0 0
0 20 0
0 0 52







1√
2

1√
2

0
− 1√

2
1√
2

0

0 0 1


 =




30 10 0
10 30 0
0 0 52




To compute the parallel axis transformation, we need to find the matrix
[
(pT

CpC)I3 − pCpT
C

]
:

pT
CpC = 6, pCpT

C =




1 1 2
1 1 2
2 2 4


 ,

[
(pT

CpC)I3 − pCpT
C

]
=




5 −1 −2
−1 5 −2
−2 −2 2




We now compute the entire transformation:

AI = A
CRCI

A
CRT + m

[
(pCpT

C)I3 − pCpT
C

]

=




30 10 0
10 30 0
0 0 52


 + 12




5 −1 −2
−1 5 −2
−2 −2 2




AI =




90 −2 −24
−2 90 −24
−24 −24 76




2. In the rest of this problem set, we will walk through the process of finding the
equations of motion for a simple manipulator from the Lagrange formulation.
Consider the RP spatial manipulator shown below. The links of this manipulator
are modeled as bars of uniform density, having square cross-sections of thickness
h, lengths of L1 and L2, and total masses of m1 and m2, with centers of mass
shown. Assume that the joints themselves are massless.



From the derivation on pp.131-133 of the notes, we know that the equations of
motion have the form:

M(q)q̈ + C(q)[q̇2] + B(q)[q̇q̇] + G(q) = τ

where M is the mass matrix, C is the matrix of coefficients for centrifugal forces,
B is the matrix of coefficients for Coriolis forces, and G is the vector of gravity
forces.

(a) For each link i, we have attached a frame {Ci} to the center of mass (in this
case, frame {2} is the same as {C2}). Compute kinematics for these frames:
that is, calculate the matrices 0

C1
T and 0

C2
T .

The transformation 1
C1

T is just a constant offset of L1/2 along the x axis; the other
transformations are found in the regular manner:

0
C1

T =




c1 −s1 0 1
2L1c1

s1 c1 0 1
2L1s1

0 0 1 0
0 0 0 1




, 0
C2

T =




c1 −s1 0 L1c1

s1 c1 0 L1s1

0 0 1 d2

0 0 0 1




For a two-link manipulator, the mass matrix has the form

M = m1J
T
v1

Jv1 + m2J
T
v2

Jv2 + JT
ω1

C1I1Jω1 + JT
ω2

C2I2Jω2

where Jvi is the linear Jacobian of the center of mass of link i, Jωi is the angu-
lar velocity of link i, and CiIi is the inertia tensor of link i expressed in frame {Ci}.

(b) Calculate 0Jv1 and 0Jv2.
These matrices are found directly by differentiating the last columns of 0

Ci
T :

0Jv1 =
[

∂0pC1
∂θ1

0
]

=



−1

2L1s1 0
1
2L1c1 0

0 0


 , 0Jv2 =

[
∂0pC2

∂θ1

∂0pC2
∂d2

]
=



−L1s1 0
L1c1 0

0 1




(c) Calculate C1Jω1 and C2Jω2.

C1Jω1 =
[

ε̄1
C1z1 0

]
=




0 0
0 0
1 0


 , C2Jω1 =

[
ε̄1

C2z1 ε̄2
C2z2

]
=




0 0
0 0
1 0




(d) Calculate C1I1 and C2I2 in terms of the masses and dimensions of the links.
You can use the same formula that was given for a box of uniform density
in Problem 1(b). Be careful which measurements you use along the axes.
Using the formula from problem 1, we see that the inertia tensor written at the center
of mass of a uniform density rectangular solid is

CI =




m
12(s2

y + s2
z) 0 0

0 m
12(s2

x + s2
z) 0

0 0 m
12(s2

x + s2
y)






where sx, sy and sz are the dimensions of the solid along the xC , yC and zC axes,
respectively. Plugging in the values for our links yields

C1I1 =




m1
6 h2 0 0
0 m1

12 (L2
1 + h2) 0

0 0 m1
12 (L2

1 + h2)


 , C2I2 =




m2
12 (L2

2 + h2) 0 0
0 m2

12 (L2
2 + h2) 0

0 0 m2
6 h2




(e) Calculate the mass matrix, M(q). To make your algebra easier, leave the
inertia tensors in symbolic form until the end, i.e.

C1I1 =




Ixx1 0 0
0 Iyy1 0
0 0 Izz1




This just requires a bit of matrix algebra:

0JT
v1

0Jv1 =

[
L2

1
4 0
0 0

]
, 0JT

v2

0Jv2 =

[
L2

1 0
0 1

]

JT
ω1

C1I1Jω1 =

[
Izz1 0
0 0

]
, JT

ω2

C2I2Jω2 =

[
Izz2 0
0 0

]

M = m1J
T
v1

Jv1 + m2J
T
v2

Jv2 + JT
ω1

C1I1Jω1 + JT
ω2

C2I2Jω2

=

[
m1
4 L2

1 + m2(L2
1) + Izz1 + Izz2 0
0 m2

]

M =

[
m1
3 L2

1 + m1
12 h2 + m2L

2
1 + m2

6 h2 0
0 m2

]

Now we need to calculate the centrifugal and Coriolis forces. We will derive the
form directly.

(f) Beginning with the equation from p. 136 in the lecture notes,

v(q, q̇) = Ṁ q̇− 1
2


 q̇T ∂M

∂q1
q̇

q̇T ∂M
∂q2

q̇


 ,

manipulate this equation symbolically into the form

v(q, q̇) = C(q)[q̇2] + B(q)[q̇q̇]

where C and B are matrices in terms of the partial derivatives mijk of the
mass matrix. Don’t actually substitute in your answer from part (e) into
this equation yet: just leave the elements of these matrices in mijk symbolic
form.

v(q, q̇) = Ṁ q̇− 1
2


 q̇T ∂M

∂q1
q̇

q̇T ∂M
∂q2

q̇




=

[
ṁ11 ṁ12

ṁ12 ṁ22

] [
q̇1

q̇2

]
− 1

2




[q̇1 q̇2]

[
m111 m121

m121 m221

] [
q̇1

q̇2

]

[q̇1 q̇2]

[
m112 m122

m122 m222

] [
q̇1

q̇2

]






=

[
m111q̇1 + m112q̇2 m121q̇1 + m122q̇2

m121q̇1 + m122q̇2 m221q̇1 + m222q̇2

] [
q̇1

q̇2

]
− 1

2




[q̇1 q̇2]

[
m111q̇1 + m121q̇2

m121q̇1 + m221q̇2

]

[q̇1 q̇2]

[
m112q̇1 + m122q̇2

m122q̇1 + m222q̇2

]




=

[
m111q̇

2
1 + m112q̇1q̇2 + m121q̇1q̇2 + m122q̇

2
2

m121q̇
2
1 + m122q̇1q̇2 + m221q̇1q̇2 + m222q̇

2
2

]
− 1

2

[
m111q̇

2
1 + 2m121q̇1q̇2 + m221q̇

2
2

m112q̇
2
1 + 2m122q̇1q̇2 + m222q̇

2
2

]

=

[
1
2m111q̇

2
1 + m122q̇

2
2 − 1

2m221q̇
2
2 + m112q̇1q̇2

m121q̇
2
1 − 1

2m112q̇
2
1 + 1

2m222q̇
2
2 + m221q̇1q̇2

]

v(q, q̇) =

[
1
2m111 m122 − 1

2m221

m121 − 1
2m112

1
2m222

] [
q̇2
1

q̇2
2

]
+

[
m112

m221

]
[q̇1q̇2]

So we have

C =

[
1
2m111 m122 − 1

2m221

m121 − 1
2m112

1
2m222

]
, B =

[
m112

m221

]

(g) Using your answer to part (e), compute the matrices C(q) and B(q) in terms
of the masses, dimensions, and configuration q of the manipulator.
This wasn’t meant to be tricky - the mass matrix is independent of the joints, so

C =

[
0 0
0 0

]
, B =

[
0
0

]

The last thing that remains is to derive the gravity vector G(q). This you should
be able to figure out for yourself.

(h) Calculate, 0G(q), the gravity vector in frame {0}, in terms of the masses,
the configuration q, and the gravity constant g (g is positive). Assume that
gravity pulls things along the −z0 direction. Be careful with your signs.
In terms of a unit gravity vector g, we have

G = −
[
JT

v1
m1g + JT

v2
m2g

]

In frame {0}, the gravity vector is 0g = [0 0 − g]T , which yields

0G = −
[ −1

2L1s1
1
2L1c1 0

0 0 0

] 


0
0

−m1g


−

[
−L1s1 L1c1 0

0 0 1

] 


0
0

−m2g




0G =

[
0

m2g

]

(i) As a final step, use your answers to parts (e), (g) and (h) to write out the
equations of motion as two great big equations

τ1 = f1(q̈, q̇, q)
τ2 = f2(q̈, q̇, q)

M

[
θ̈1

d̈2

]
+ C

[
θ̇2
1

θ̇2
2

]
+ B

[
θ̇1ḋ2

]
+ G =

[
τ1

τ2

]

τ1 =
(

m1

3
L2

1 +
m1

12
h2 + m2L

2
1 +

m2

6
h2

)
θ̈1

τ2 = m2d̈2 + m2g


