(Winter 2007/2008)

1. A frame $\{B\}$ and a frame $\{A\}$ are initially coincident. Frame $\{B\}$ is rotated about \hat{Y}_B by an angle θ , and then rotated about the new \hat{Z}_B by an angle ϕ . Determine the 3×3 rotation matrix, ${}^{A}_{B}R$, which will transform the coordinates of a position vector from ${}^{B}\mathbf{P}$, its value in frame $\{B\}$, into ${}^{A}\mathbf{P}$, its value in frame $\{A\}$.

Consider the intermediate frame $\{M\}$ which results after the first rotation:

$${}^{A}_{B}R = {}^{A}_{M}R{}^{M}_{B}R$$

Now, the frame transformations from $\{A\}$ to $\{M\}$, and $\{M\}$ to $\{B\}$, are precisely those rotations listed in the question, so we know that ${}^{A}_{M}R = R_{y}(\theta)$ and ${}^{M}_{B}R = R_{z}(\phi)$. Thus:

$${}^{A}_{B}R = R_{y}(\theta)R_{z}(\phi)$$

Indeed, this is the Y-Z Euler-angle representation for frame $\{B\}$ w.r.t. frame $\{A\}$. Written out:

$${}^{A}_{B}R = \begin{bmatrix} c\theta & 0 & s\theta \\ 0 & 1 & 0 \\ -s\theta & 0 & c\theta \end{bmatrix} \begin{bmatrix} c\phi & -s\phi & 0 \\ s\phi & c\phi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} c\theta c\phi & -c\theta s\phi & s\theta \\ s\phi & c\phi & 0 \\ -s\theta c\phi & s\theta s\phi & c\theta \end{bmatrix}$$

2. We are given a single frame $\{A\}$ and a position vector ${}^{A}\mathbf{P}$ described in this frame. We then transform ${}^{A}\mathbf{P}$ by first rotating it about \hat{Z}_{A} by an angle ϕ , then rotating about \hat{Y}_{A} by an angle θ . Determine the 3×3 rotation matrix operator, $R(\phi, \theta)$, which describes this transformation.

Suppose the first rotation converts ${}^{A}\mathbf{P} \rightarrow {}^{A}\mathbf{P}'$, and the second rotation converts ${}^{A}\mathbf{P}' \rightarrow {}^{A}\mathbf{P}''$. Then we have:

$${}^{A}\mathbf{P}' = R_{z}(\phi)^{A}\mathbf{P}$$
$${}^{A}\mathbf{P}'' = R_{y}(\theta)^{A}\mathbf{P}'$$
$$\Rightarrow {}^{A}\mathbf{P}'' = R_{u}(\theta)R_{z}(\phi)^{A}\mathbf{P}$$

which gives the result:

$$R(\phi, \theta) = R_y(\theta) R_z(\phi)$$

This is the same matrix as question 1. After all, this displacement is mathematically equivalent to a frame transformation using Z-Y Fixed-Angle representation, which in turn is mathematically equivalent to a Y-Z Euler-Angle representation.

3. (a) Given a transformation matrix:

$${}^{B}_{A}T = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & \cos(\theta) & -\sin(\theta) & 2 \\ 0 & \sin(\theta) & \cos(\theta) & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Find ${}^{A}_{B}T$

Use Equation 1.26 from page 20 of the Lecture Notes, to get:

$${}^{B}_{A}T = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & c\theta & s\theta & -2c\theta - 3s\theta \\ 0 & -s\theta & c\theta & 2s\theta - 3c\theta \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(b) Given $\theta = 45^{\circ}$ and ${}^{B}P = \begin{bmatrix} 4 & 5 & 6 \end{bmatrix}^{T}$, compute ${}^{A}P$. ${}^{A}P = \begin{bmatrix} 3 & 4.24 & 0 \end{bmatrix}^{T}$

4. Given the following 3×3 matrix:

$$R = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ -\frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{\sqrt{2}} & \frac{1}{2} \end{bmatrix}$$

(a) Show that it is a rotation matrix.

This can be shown by $R^T R = I$, where I is the identity matrix.

$$R^{T}R = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ -\frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{\sqrt{2}} & \frac{1}{2} \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(b) Determine a unit vector that defines the axis of rotation and the angle (in degrees) of rotation.

Apply equations 1.52, 1.53 on page 34 of the Lecture Notes, to get: $angle = 62.8^{\circ}$, and $axis = \begin{bmatrix} -0.679 & 0.679 & -0.281 \end{bmatrix}^{T}$.

(c) What are the Euler parameters $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4$ of *R*?

Apply equations 1.54 – 1.57 on pages 34-35 of the Lecture Notes: $\varepsilon_1 = -0.354$, $\varepsilon_2 = 0.354$, $\varepsilon_3 = -0.146$, $\varepsilon_4 = 0.854$.