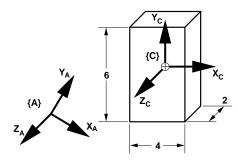
(Winter 2007/2008)

Due: Wednesday, March 05

- 1. (a) Derive a formula that transforms an inertia tensor given in some frame $\{C\}$ into a new frame $\{A\}$. The frame $\{A\}$ can differ from frame $\{C\}$ by both translation and rotation. You may assume that frame $\{C\}$ is located at the center of mass.
 - (b) Consider, for example, the uniform density box shown below. It has mass m = 12kg, and dimensions $6 \times 4 \times 2$:



Frame $\{C\}$ lies at the center of mass of the box, and the coordinate axes are ligned up with the principal axes of the box. In other words, \mathbf{Y}_C is aligned with the long axis of the box, and \mathbf{X}_C and \mathbf{Z}_C are aligned with the short axes of the box.

Compute the inertia tensor of the box in frame $\{C\}$.

Note: For a frame located at the center of mass and oriented along the principal axes, the inertia tensor for the box of uniform density takes the form:

$${}^{C}I = \begin{bmatrix} \frac{m}{12}(s_{y}^{2} + s_{z}^{2}) & 0 & 0\\ 0 & \frac{m}{12}(s_{x}^{2} + s_{z}^{2}) & 0\\ 0 & 0 & \frac{m}{12}(s_{x}^{2} + s_{y}^{2}) \end{bmatrix}$$

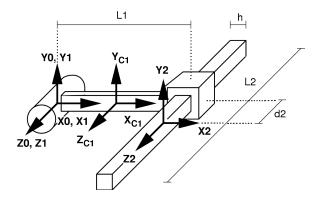
where s_x , s_y and s_z are the dimensions of the box along the \mathbf{X}_C , \mathbf{Y}_C and \mathbf{Z}_C axes, respectively.

(c) Given the transformation matrix from $\{C\}$ to $\{A\}$:

$${}^{A}_{C}T = \begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 1\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 1\\ 0 & 0 & 1 & 2\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

use your formula from part (a) and your inertia tensor from part (b) to compute the inertia tensor of the box in frame $\{A\}$.

2. In the rest of this problem set, we will walk through the process of finding the equations of motion for a simple manipulator from the Lagrange formulation. Consider the RP spatial manipulator shown below. The links of this manipulator are modeled as bars of uniform density, having square cross-sections of thickness h, lengths of L_1 and L_2 , and total masses of m_1 and m_2 , with centers of mass shown. Assume that the joints themselves are massless.



From the derivation in the Lecture Notes, we know that the equations of motion have the form:

$$M(\mathbf{q})\ddot{\mathbf{q}} + C(\mathbf{q})\dot{\mathbf{q}}^2 + B(\mathbf{q})\left[\dot{\mathbf{q}}\dot{\mathbf{q}}\right] + \mathbf{G}(\mathbf{q}) = \tau$$

where M is the mass matrix, C is the matrix of coefficients for centrifugal forces, B is the matrix of coefficients for Coriolis forces, and **G** is the vector of gravity forces.

(a) For each link *i*, we have attached a frame $\{C_i\}$ to the center of mass (in this case, frame $\{2\}$ is the same as $\{C_2\}$). Compute kinematics for these frames: that is, calculate the matrices ${}^0_{C_1}T$ and ${}^0_{C_2}T$.

For a two-link manipulator, the mass matrix has the form

$$M = m_1 J_{v_1}^T J_{v_1} + m_2 J_{v_2}^T J_{v_2} + J_{\omega_1}^T C_1 I_1 J_{\omega_1} + J_{\omega_2}^T C_2 I_2 J_{\omega_2}$$

where J_{v_i} is the linear Jacobian of the center of mass of link i, J_{ω_i} is the angular velocity of link i, and $C_i I_i$ is the inertia tensor of link i expressed in frame $\{C_i\}$.

- (b) Calculate ${}^{0}J_{v_1}$ and ${}^{0}J_{v_2}$.
- (c) Calculate $C_1 J_{\omega_1}$ and $C_2 J_{\omega_2}$.
- (d) Calculate C_1I_1 and C_2I_2 in terms of the masses and dimensions of the links. You can use the same formula that was given for a box of uniform density in Problem 2(b). Be careful which measurements you use along the axes.
- (e) Calculate the mass matrix, $M(\mathbf{q})$. To make your algebra easier, leave the inertia tensors in symbolic form until the end, i.e.

$${}^{C_1}I_1 = \left[\begin{array}{ccc} I_{xx1} & 0 & 0\\ 0 & I_{yy1} & 0\\ 0 & 0 & I_{zz1} \end{array} \right]$$

Now we need to calculate the centrifugal and Coriolis forces. We will derive the form directly.

(f) Beginning with the equation in the Lecture Notes,

$$\mathbf{v}(\mathbf{q}, \dot{\mathbf{q}}) = \dot{M} \dot{\mathbf{q}} - \frac{1}{2} \begin{bmatrix} \dot{\mathbf{q}}^T \frac{\partial M}{\partial q_1} \dot{\mathbf{q}} \\ \dot{\mathbf{q}}^T \frac{\partial M}{\partial q_2} \dot{\mathbf{q}} \end{bmatrix},$$

manipulate this equation symbolically into the form

$$\mathbf{v}(\mathbf{q}, \dot{\mathbf{q}}) = C(\mathbf{q})[\dot{\mathbf{q}}^2] + B(\mathbf{q})[\dot{\mathbf{q}}\dot{\mathbf{q}}]$$

where C and B are matrices in terms of the partial derivatives m_{ijk} of the mass matrix. Don't actually substitute in your answer from part (e) into this equation yet: just leave the elements of these matrices in m_{ijk} symbolic form.

(g) Using your answer to part (e), compute the matrices $C(\mathbf{q})$ and $B(\mathbf{q})$ in terms of the masses, dimensions, and configuration \mathbf{q} of the manipulator.

The last thing that remains is to derive the gravity vector $\mathbf{G}(\mathbf{q})$.

- (h) Calculate, ${}^{0}\mathbf{G}(\mathbf{q})$, the gravity vector in frame {0}, in terms of the masses, the configuration \mathbf{q} , and the gravity constant g (g is positive). Assume that gravity pulls things along the $-\mathbf{Z}_{0}$ direction. Be careful with your signs.
- (i) As a final step, use your answers to parts (e), (h) and (i) to write out the equations of motion as two great big equations:

$$\tau_1 = f_1(\mathbf{\ddot{q}}, \mathbf{\dot{q}}, \mathbf{q})$$

$$\tau_2 = f_2(\mathbf{\ddot{q}}, \mathbf{\dot{q}}, \mathbf{q})$$